Андроид. Windows. Антивирусы. Гаджеты. Железо. Игры. Интернет. Операционные системы. Программы.

010 двоичный код. Бинарный код. Преобразование дробных десятичных чисел в двоичные

Поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток - нет тока, индукция магнитного поля больше пороговой величины или нет и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину индукции магнитного поля, потребуется ввести два пороговых значения, что не будет способствовать помехоустойчивости и надёжности хранения информации.
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения - основных действий над числами.
  • Возможно применение аппарата алгебры логики для выполнения побитовых операций над числами.

Ссылки

  • Онлайн калькулятор для перевода чисел из одной системы счисления в другую

Wikimedia Foundation . 2010 .

Смотреть что такое "Бинарный код" в других словарях:

    2 битный код Грея 00 01 11 10 3 битный код Грея 000 001 011 010 110 111 101 100 4 битный код Грея 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000 Код Грея система счисления, в которой два соседних значения… … Википедия

    Код сигнальной точки (англ. Signal Point Code (SPC)) сигнальной системы 7 (SS7, ОКС 7) это уникальный (в домашней сети) адрес узла, используемый на третьем уровне MTP (маршрутизация) в телекоммуникационных ОКС 7 сетях для идентификации … Википедия

    В математике бесквадратным называется число, которое не делится ни на один квадрат, кроме 1. К примеру, 10 бесквадратное, а 18 нет, так как 18 делится на 9 = 32. Начало последовательности бесквадратных чисел таково: 1, 2, 3, 5, 6, 7,… … Википедия

    Для улучшения этой статьи желательно?: Викифицировать статью. Переработать оформление в соответствии с правилами написания статей. Исправить статью согласно стилистическим правилам Википедии … Википедия

    У этого термина существуют и другие значения, см. Python (значения). Python Класс языка: му … Википедия

    В узком смысле слова в настоящее время под словосочетанием понимается «Покушение на систему безопасности», и склоняется скорее к смыслу следующего термина Крэкерская атака. Это произошло из за искажения смысла самого слова «хакер». Хакерская… … Википедия

Одиночный цифровой сигнал не слишком информативен, ведь он может принимать только два значения: нуль и единица. Поэтому в тех случаях, когда необходимо передавать, обрабатывать или хранить большие объемы информации, обычно применяют несколько параллельных цифровых сигналов. При этом все эти сигналы должны рассматриваться только одновременно, каждый из них по отдельности не имеет смысла. В таких случаях говорят о двоичных кодах, то есть о кодах, образованных цифровыми (логическими, двоичными) сигналами. Каждый из логических сигналов, входящих в код, называется разрядом. Чем больше разрядов входит в код, тем больше значений может принимать данный код.

В отличие от привычного для нас десятичного кодирования чисел, то есть кода с основанием десять, при двоичном кодировании в основании кода лежит число два (рис. 2.9). То есть каждая цифра кода (каждый разряд) двоичного кода может принимать не десять значений (как в десятичном коде: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а всего лишь два - 0 и 1. Система позиционной записи остается такой же, то есть справа пишется самый младший разряд, а слева - самый старший. Но если в десятичной системе вес каждого следующего разряда больше веса предыдущего в десять раз, то в двоичной системе (при двоичном кодировании) - в два раза. Каждый разряд двоичного кода называется бит (от английского "Binary Digit" - "двоичное число").

Рис. 2.9. Десятичное и двоичное кодирование

В табл. 2.3 показано соответствие первых двадцати чисел в десятичной и двоичной системах.

Из таблицы видно, что требуемое количество разрядов двоичного кода значительно больше, чем требуемое количество разрядов десятичного кода. Максимально возможное число при количестве разрядов, равном трем, составляет при десятичной системе 999, а при двоичной - всего лишь 7 (то есть 111 в двоичном коде). В общем случае n-разрядное двоичное число может принимать 2 n различных значений, а n-разрядное десятичное число - 10 n значений. То есть запись больших двоичных чисел (с количеством разрядов больше десяти) становится не слишком удобной.

Таблица 2.3. Соответствие чисел в десятичной и двоичной системах
Десятичная система Двоичная система Десятичная система Двоичная система

Для того чтобы упростить запись двоичных чисел, была предложена так называемая шестнадцатеричная система (16-ричное кодирование). В этом случае все двоичные разряды разбиваются на группы по четыре разряда (начиная с младшего), а затем уже каждая группа кодируется одним символом. Каждая такая группа называется полубайтом (или нибблом , тетрадой ), а две группы (8 разрядов) - байтом. Из табл. 2.3 видно, что 4-разрядное двоичное число может принимать 16 разных значений (от 0 до 15). Поэтому требуемое число символов для шестнадцатиричного кода тоже равно 16, откуда и происходит название кода. В качестве первых 10 символов берутся цифры от 0 до 9, а затем используются 6 начальных заглавных букв латинского алфавита: A, B, C, D, E, F.

Рис. 2.10. Двоичная и 16-ричная запись числа

В табл. 2.4 приведены примеры 16-ричного кодирования первых 20 чисел (в скобках приведены двоичные числа), а на рис. 2.10 показан пример записи двоичного числа в 16-ричном виде. Для обозначения 16-ричного кодирования иногда применяют букву "h" или "H" (от английского Hexadecimal) в конце числа, например, запись A17F h обозначает 16-ричное число A17F. Здесь А1 представляет собой старший байт числа, а 7F - младший байт числа. Все число (в нашем случае - двухбайтовое) называется словом .

Таблица 2.4. 16-ричная система кодирования
Десятичная система 16-ричная система Десятичная система 16-ричная система
0 (0) A (1010)
1(1) B (1011)
2 (10) C (1100)
3 (11) D (1101)
4 (100) E (1110)
5 (101) F (1111)
6 (110) 10 (10000)
7 (111) 11 (10001)
8 (1000) 12 (10010)
9 (1001) 13 (10011)

Для перевода 16-ричного числа в десятичное необходимо умножить значение младшего (нулевого) разряда на единицу, значение следующего (первого) разряда на 16, второго разряда на 256 (16 2) и т.д., а затем сложить все произведения. Например, возьмем число A17F:

A17F=F*16 0 + 7*16 1 + 1*16 2 + A*16 3 = 15*1 + 7*16+1*256+10*4096=41343

Но каждому специалисту по цифровой аппаратуре (разработчику, оператору, ремонтнику, программисту и т.д.) необходимо научиться так же свободно обращаться с 16-ричной и двоичной системами, как и с обычной десятичной, чтобы никаких переводов из системы в систему не требовалось.

Помимо рассмотренных кодов, существует также и так называемое двоично-десятичное представление чисел. Как и в 16-ричном коде, в двоично-десятичном коде каждому разряду кода соответствует четыре двоичных разряда, однако каждая группа из четырех двоичных разрядов может принимать не шестнадцать, а только десять значений, кодируемых символами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. То есть одному десятичному разряду соответствует четыре двоичных. В результате получается, что написание чисел в двоично-десятичном коде ничем не отличается от написания в обычном десятичном коде (табл. 2.6), но в реальности это всего лишь специальный двоичный код, каждый разряд которого может принимать только два значения: 0 и 1. Двоично-десятичный код иногда очень удобен для организации десятичных цифровых индикаторов и табло.

Таблица 2.6. Двоично-десятичная система кодирования
Десятичная система Двоично-десятичная система Десятичная система Двоично-десятичная система
0 (0) 10 (1000)
1(1) 11 (1001)
2 (10) 12 (10010)
3 (11) 13 (10011)
4 (100) 14 (10100)
5 (101) 15 (10101)
6 (110) 16 (10110)
7 (111) 17 (10111)
8 (1000) 18 (11000)
9 (1001) 19 (11001)

В двоичном коде над числами можно проделывать любые арифметические операции: сложение, вычитание, умножение, деление.

Рассмотрим, например, сложение двух 4-разрядных двоичных чисел. Пусть надо сложить число 0111 (десятичное 7) и 1011 (десятичное 11). Сложение этих чисел не сложнее, чем в десятичном представлении:

При сложении 0 и 0 получаем 0, при сложении 1 и 0 получаем 1, при сложении 1 и 1 получаем 0 и перенос в следующий разряд 1. Результат - 10010 (десятичное 18). При сложении любых двух n-разрядных двоичных чисел может получиться n-разрядное или (n+1)-разрядное число.

Точно так же производится вычитание. Пусть из числа 10010 (18) надо вычесть число 0111 (7). Записываем числа с выравниванием по младшему разряду и вычитаем точно так же, как в случае десятичной системы:

При вычитании 0 из 0 получаем 0, при вычитании 0 из 1 получаем 1, при вычитании 1 из 1 получаем 0, при вычитании 1 из 0 получаем 1 и заем 1 в следующем разряде. Результат - 1011 (десятичное 11).

При вычитании возможно получение отрицательных чисел, поэтому необходимо использовать двоичное представление отрицательных чисел.

Для одновременного представления как двоичных положительных, так и двоичных отрицательных чисел чаще всего используется так называемый дополнительный код. Отрицательные числа в этом коде выражаются таким числом, которое, будучи сложено с положительным числом такой же величины, даст в результате нуль. Для того чтобы получить отрицательное число, надо поменять все биты такого же положительного числа на противоположные (0 на 1, 1 на 0) и прибавить к результату 1. Например, запишем число –5. Число 5 в двоичном коде выглядит 0101. Заменяем биты на противоположные: 1010 и прибавляем единицу: 1011. Суммируем результат с исходным числом: 1011 + 0101 = 0000 (перенос в пятый разряд игнорируем).

Отрицательные числа в дополнительном коде отличаются от положительных значением старшего разряда: единица в старшем разряде определяет отрицательное число, а нуль - положительное.

Помимо стандартных арифметических операций, в двоичной системе счисления используются и некоторые специфические операции, например, сложение по модулю 2. Эта операция (обозначается A) является побитовой, то есть никаких переносов из разряда в разряд и заемов в старших разрядах здесь не существует. Правила сложения по модулю 2 следующие: , , . Эта же операция называется функцией Исключающее ИЛИ . Например, просуммируем по модулю 2 два двоичных числа 0111 и 1011:

Среди других побитовых операций над двоичными числами можно отметить функцию И и функцию ИЛИ. Функция И дает в результате единицу только тогда, когда в соответствующих битах двух исходных чисел обе единицы, в противном случае результат -0. Функция ИЛИ дает в результате единицу тогда, когда хотя бы один из соответствующих битов исходных чисел равен 1, в противном случае результат 0.

Всем известно, что компьютеры могут выполнять вычисления с большими группами данных на огромной скорости. Но не все знают, что эти действия зависят всего от двух условий: есть или нет ток и какое напряжение.

Каким же образом компьютер умудряется обрабатывать такую разнообразную информацию?
Секрет заключается в двоичной системе исчисления. Все данные поступают в компьютер, представленные в виде единиц и нулей, каждому из которых соответствует одно состояние электропровода: единицам - высокое напряжение, нулям - низкое или же единицам - наличие напряжения, нулям - его отсутствие. Преобразование данных в нули и единицы называется двоичной конверсией, а окончательное их обозначение - двоичным кодом.
В десятичном обозначении, основанном на десятичной системе исчисления, которая используется в повседневной жизни, числовое значение представлено десятью цифрами от 0 до 9, и каждое место в числе имеет ценность в десять раз выше, чем место справа от него. Чтобы представить число больше девяти в десятичной системе исчисления, на его место ставится ноль, а на следующее, более ценное место слева - единица. Точно так же в двоичной системе, где используются только две цифры - 0 и 1, каждое место в два раза ценнее, чем место справа от него. Таким образом, в двоичном коде только ноль и единица могут быть изображены как одноместные числа, и любое число, больше единицы, требует уже два места. После ноля и единицы следующие три двоичных числа это 10 (читается один-ноль) и 11 (читается один-один) и 100 (читается один-ноль-ноль). 100 двоичной системы эквивалентно 4 десятичной. На верхней таблице справа показаны другие двоично-десятичные эквиваленты.
Любое число может быть выражено в двоичном коде, просто оно займет больше места, чем в десятичном обозначении. В двоичной системе можно записать и алфавит, если за каждой буквой закрепить определенное двоичное число.

Две цифры на четыре места
16 комбинаций можно составить, используя темные и светлые шары, комбинируя их в наборах из четырех штук Если темные шары принять за нули, а светлые за единицы, то и 16 наборов окажутся 16-единичным двоичным кодом, числовая ценность которого составляет от нуля до пяти (см. верхнюю таблицу на стр. 27). Даже с двумя видами шаров в двоичной системе можно построить бесконечное количество комбинаций, просто увеличивая число шариков в каждой группе - или число мест в числах.

Биты и байты

Самая маленькая единица в компьютерной обработке, бит - это единица данных, которая может обладать одним из двух возможных условий. К примеру, каждая из единиц и нулей (справа) означает 1 бит. Бит можно представить и другими способами: наличием или отсутствием электрического тока, дырочкой и ее отсутствием, направлением намагничивания вправо или влево. Восемь битов составляют байт. 256 возможных байтов могут представить 256 знаков и символов. Многие компьютеры обрабатывают байт данных одновременно.

Двоичная конверсия. Четырехцифровой двоичный код может представить десятичные числа от 0 до 15.

Кодовые таблицы

Когда двоичный код используется для обозначения букв алфавита или пунктуационных знаков, требуются кодовые таблицы, в которых указано, какой код какому символу соответствует. Составлено несколько таких кодов. Большинство ПК приспособлено под семицифровой код, называемый ASCII, или американский стандартный код для информационного обмена. На таблице справа показаны коды ASCII для английского алфавита. Другие коды предназначаются для тысяч символов и алфавитов других языков мира.

Часть таблицы кода ASCII

Tool to make binary conversions. Binary code is a numeric system using base 2 used in informatics, symbols used in binary notation are generally zero and one (0 and 1).

Answers to Questions

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to convert a number in binary?

To convert a number to binary (with zeroes and ones) consists in a from base 10 to base 2 (natural binary code )

Example: 5 (base 10) = 1*2^2+0*2^1+1*2^0 = 101 (base 2)

The method consists in making successive divisions by 2 and noting the remainder (0 or 1 ) in the reverse order.

Example: 6/2 = 3 remains 0, then 3/2 = 1 remains 1, then 1/2 = 0 remains 1. The successive remainders are 0,1,1 so 6 is written 110 in binary .

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to convert a text in binary?

Associate with each letter of the alphabet a number, for example by using the code or the . This will replace each letter by a number that can then be converted to binary (see above).

Example: AZ is 65,90 () so 1000001,1011010 in binary

Similarly for binary to text translation, convert the binary to a number and then associate that number with a letter in the desired code.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to translate binary

The binary does not directly translate, any number encoded in binary remains a number. On the other hand, it is common in computer science to use binary to store text, for example by using the table, which associates a number with a letter. An translator is available on dCode.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is a bit?

A bit (contraction of binary digit) is a symbol in the binary notation: 0 or 1.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is 1"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1.

Example: 0111 becomes 1000, so 7 becomes -7

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is 2"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1 and adding 1.

Example: 0111 becomes 1001

Ask a new question

Source code

dCode retains ownership of the source code of the script Binary Code online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Binary Code script for offline use on PC, iPhone or Android, ask for price quote on

На данном уроке будет рассмотрена тема «Кодирование информации. Двоичное кодирование. Единицы измерения информации». В ходе него пользователи смогут получить представление о кодировании информации, способах восприятия информации компьютеров, единицах ее измерения и двоичном кодировании.

Тема: Информация вокруг нас

Урок: Кодирование информации. Двоичное кодирование. Единицы измерения информации

На данном уроке будут рассмотрены следующие вопросы:

1. Кодирование как изменение формы представления информации.

2. Как компьютер распознает информацию?

3. Как измерить информацию?

4. Единицы измерения информации.

В мире кодов

Зачем люди кодируют информацию?

1. Скрыть ее от других (зеркальная тайнопись Леонардо да Винчи, военные шифровки).

2. Записать информацию короче (стенография, аббревиатура, дорожные знаки).

3. Для более легкой обработки и передачи (азбука Морзе, перевод в электрические сигналы - машинные коды).

Кодирование - это представление информации с помощью некоторого кода.

Код - это система условных знаков для представления информации.

Способы кодирования информации

1. Графический (см. Рис. 1) (с помощью рисунков и знаков).

Рис. 1. Система сигнальных флагов (Источник)

2. Числовой (с помощью чисел).

Например: 11001111 11100101.

3. Символьный (с помощью символов алфавита).

Например: НКМБМ ЧГЁУ.

Декодирование - это действие по восстановлению первоначальной формы представления информации. Для декодирования необходимо знать код и правила кодирования.

Средством кодирования и декодирования служит кодовая таблица соответствия. Например, соответствие в различных системах счисления - 24 - XXIV, соответствие алфавита каким-либо символам (Рис. 2).


Рис. 2. Пример шифра (Источник)

Примеры кодирования информации

Примером кодирования информации является азбука Морзе (см. Рис. 3).

Рис. 3. Азбука Морзе ()

В азбуке Морзе используется всего 2 символа - точка и тире (короткий и длинный звук).

Еще одним примером кодирования информации является флажковая азбука (см. Рис. 4).

Рис. 4. Флажковая азбука ()

Также примером является азбука флагов (см. Рис. 5).

Рис. 5. Азбука флагов ()

Всем известный пример кодирования - нотная азбука (см. Рис. 6).

Рис. 6. Нотная азбука ()

Рассмотрим следующую задачу:

Используя таблицу флажковой азбуки (см. Рис. 7), необходимо решить следующую задачу:

Рис. 7

Старший помощник Лом сдает экзамен капитану Врунгелю. Помогите ему прочитать следующий текст (см. Рис. 8):

Вокруг нас существуют преимущественно два сигнала, например:

Светофор: красный - зеленый;

Вопрос: да - нет;

Лампа: горит - не горит;

Можно - нельзя;

Хорошо - плохо;

Истина - ложь;

Вперед - назад;

Есть - нет;

Всё это сигналы, обозначающие количество информации в 1 бит.

1 бит - это такое количество информации, которое позволяет нам выбрать один вариант из двух возможных.

Компьютер - это электрическая машина, работающая на электронных схемах. Чтобы компьютер распознал и понял вводимую информацию, ее надо перевести на компьютерный (машинный) язык.

Алгоритм, предназначенный для исполнителя, должен быть записан, то есть закодирован, на языке, понятном компьютеру.

Это электрические сигналы: проходит ток или не проходит ток.

Машинный двоичный язык - последовательность "0" и "1". Каждое двоичное число может принимать значение 0 или 1.

Каждая цифра машинного двоичного кода несет количество информации, равное 1 бит.

Двоичное число, которое представляет наименьшую единицу информации, называется б ит . Бит может принимать значение либо 0, либо 1. Наличие магнитного или электронного сигнала в компьютере означает 1, отсутствие 0.

Строка из 8 битов называется б айт . Эту строку компьютер обрабатывает как отдельный символ (число, букву).

Рассмотрим пример. Слово ALICE состоит из 5 букв, каждая из которых на языке компьютера представлена одним байтом (см. Рис. 10). Стало быть, Alice можно измерить как 5 байт.

Рис. 10. Двоичный код (Источник)

Кроме бита и байта, существуют и другие единицы измерения информации.

Список литературы

1. Босова Л.Л. Информатика и ИКТ: Учебник для 5 класса. - М.: БИНОМ. Лаборатория знаний, 2012.

2. Босова Л.Л. Информатика: Рабочая тетрадь для 5 класса. - М.: БИНОМ. Лаборатория знаний, 2010.

3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. - М.: БИНОМ. Лаборатория знаний, 2010.

2. Фестиваль "Открытый урок" ().

Домашнее задание

1. §1.6, 1.7 (Босова Л.Л. Информатика и ИКТ: Учебник для 5 класса).

2. Стр. 28, задания 1, 4; стр. 30, задания 1, 4, 5, 6 (Босова Л.Л. Информатика и ИКТ: Учебник для 5 класса).

Похожие публикации