Андроид. Windows. Антивирусы. Гаджеты. Железо. Игры. Интернет. Операционные системы. Программы.

Схемы проверенных фм передатчиков на варикапах. Схемы мощных радиопередатчиков. Технические характеристики радиопередатчика

Недавно попробовал собрать радиопередатчик с использованием в модуляторе варикапа, по схемке с сайта ЭЛВО. Так как он нужен был для передачи звукового сигнала, а не разговора, вместо микрофона поставил штекер. Катушка 9 витков провода диаметром 1 мм, на среднем отвод запаян. Как ни странно FM передатчик запустил с первого раза, частоту поймал на 91.9 мгц. Прибор собрал, настроил. Глубина баса и качество порадовали, а также мощность. На данный момент это самый удачный мой передатчик.

Ток потребления от кроны около 18,5-21 мА, правда крона подсевшая и выдает 8.2 вольта, но устройство работает. При испытаниях работало от 9.1 вольта вплоть до 7.1 и частота не плыла! По дому берется прекрасно, как будто обычное FM радио слушаешь. И нет влияний ни антены, ни приемника - звук чистый, без всяких шумов.


Варикап брал в модуле дециметрового канала от ТВ, их там штук 5 вроде стоят. Резистор r6 лучше уменьшить, чем в схеме, до 27-30 кОм, это если сигнал со штекера, а не микрофона. Дроссель подбирать желательно, чтобы выходной транзистор не грелся и что бы мощность была оптимальной - это уже с ВЧ индикатором поиграетесь. Антену через конденсатор 10-15 пф с коллектора снимать, тогда передатчик не подвержен влиянию человека. Мощность сигнала такая, что мой волномер не имея контакта, а лежа рядом с антеной, почти зашкаливает. Всё собрал и настроил за день, поэтому рекомендую эту схему к повторению. Кстати катушку пробовал мотать 1.2 мм проводом - сигнал плохой, все возбудится в генераторе, так что лучше 0.5-0.7 мм, не более.


Нашёл небольшую пластиковую коробочку и расположение элементов в корпусе слишком плотное получилось - еле все в коробку впихнул, надо было взять чуть поболее в размерах. В корпусе у меня сама плата FM передатчика лежит, аккумуулятор литиевый, и переключатель с гнездом для зарядки (как мобила прямо вышла). Схему собрал и испытал: redmoon.


РАДИОПЕРЕДАТЧИК НА 600 МЕТРОВ

При использовании компактной антенны это устройство обеспечивает дальность связи около 100 метров, а при использовании полноразмерной штыревой антенны - более 600 метров. Схема передатчика приведена на рис.

Сигнал от микрофона поступает на усилитель низкой частоты (транзисторы VT1, VT2) c непосредственными связями. Усиленный сигнал через фильтр R9, C4, R10 подается на варикап VD1 типа КВ109, включенный в эмиттерную цепь транзистора VT3 типа КТ904. Напряжение смещения варикапа задается коллекторным напряжением транзистора VT2. Генератор ВЧ выполнен по схеме общей базы. В коллекторной цепи транзистора VT3 включен контур C8, C9, L1. Частота настройки определяется индуктивностью катушки и емкостями C8, C5, VD1. Конденсатор С9 устанавливает глубину обратной связи, а С10 - согласование с антенной. Дроссель любого типа индуктивностью около 60 мкГн. Катушка L1 - бескаркасная, с внутренним диаметром 8 мм, имеет 7 витков провода ПЭВ 0,8 мм. Длина полной антенны 0,75...1 метр. Мощность передатчика около 200 мВт. Если такая мощность не нужна, можно понизить ее, применив резистор R2 сопротивлением 50..100 кОм и заменив дроссель резистором сопротивлением около 300 Ом. Транзистор при этом можно заменить на КТ368. Стабильность частоты маломощного передатчика выше, и увеличивается срок службы батарей.

Радиопередатчик повышенной мощности без дополнительного усилителя мощности

От предыдущих устройств предлагаемый радиопередатчик отличается конструкцией задающего генератора, позволяющей получить по¬вышенную мощность излучения без использования дополнительного усилителя мощности. Радиопередатчик (рис.1) работает на частоте 27-28 МГц с амплитудной модуляцией. Частота несущей стабилизирована кварцем, что позволяет увеличить дальность связи при использовании приемника с кварцевой стабилизацией частоты. Питается устройство от источника питания напряжением 3-4,5 В. Усилитель звуковой частоты выполнен на транзисторе VT1 типа КТ315. Для питания микрофона и задания режимов по постоянному току транзисторов VT1, VT2, VT3 используется параметрический ста¬билизатор напряжения на резисторе R2, светодиоде VD1 и конденса¬торе С1. Напряжение 1,2 В поступает на электретный микрофон с усилителем Ml типа МКЭ-3, "Сосна" и др. Напряжение звуковой час¬тоты с микрофона Ml через конденсатор С2 поступает на базу тран¬зистора VT1. Режим работы этого транзистора по постоянному току задается резистором R1. Усиленный сигнал звуковой частоты, снимае¬мый с коллекторной нагрузки транзистора VT1 - резистора R3, через конденсатор СЗ поступает на задающий генератор, осуществляя тем самым амплитудную модуляцию передатчика. Задающий генератор передатчика собран на двух транзисторах VT2 и VT3 типа КТ315 и представляет собой двухтактный автогенератор с кварцевой стабили¬зацией в цепи обратной связи. Контур, состоящий из катушки L1 и конденсатора С5, настроен на частоту кварцевого резонатора ZQ1. Контур, состоящий из катушки L2 и конденсатора С7, предназначен для согласования антенны и передатчика. В устройстве применены резисторы МЛТ-0,125. Конденсаторы ис¬пользованы на напряжение более 6,3 В. Транзистор VT1 можно заме¬нить на любой п-р-п транзистор, например, на КТ3102, КТ312. Тран¬зисторы VT2, VT3 можно заменить на КТ3102, КТ368 с одинаковым коэффициентом передачи по току. Хороший результат можно полу¬чить при использовании микросхемы КР159НТ1, представляющей со¬бой пару идентичных транзисторов. Контурные катушки намотаны на каркасе диаметром 5 мм, имею¬щем подстроечный сердечник из карбонильного железа диаметром 3,5 мм. Намотка катушек ведется с шагом 1 мм. Катушка L1 имеет 4+4 в качестве опорного элемента параметрического стабилизатора напряжения схемы рис. 1 витка, катушка L2 - 4 витка. Обе катушки намотаны проводом ПЭВ 0,5. Дроссель Др1 имеет индуктивность 20-50 мкГн. В качестве антенны используется провод длиной около 1 м. В качестве источника питания можно использовать одну плоскую батарею КБС-4,5 В или четыре элемента типа А316, А336, А343. Светодиод VD1 типа АЛ307 можно заменить любым другим или использовать аналог низковольтного стабилитрона с малым током ста¬билизации (рис. 2.). Настройку передатчика начинают с установки режимов транзисто¬ров VT2 и VT3 по постоянному току. Для этого подключают миллиам¬перметр в разрыв цепи питания в точке А и подбирают величину со¬противления резистора R4 такой, чтобы ток был равен 40 мА. Настройку контуров L1, L2, С5, С7 проводят по максимуму ВЧ излучения. Причем грубо на рабочую частоту настраивают конденса¬торами, а точнее - сердечником катушки. Подстроечник катушек L1, L2 должен находиться на расстоянии не более чем 3 мм от центра катушек, т. к. в крайних его положениях генерация может срываться из-за нарушения симметрии плеч транзисторов VT2, VT3.

Передатчик на 5 километров:

Усилитель мощности на 20 ватт

Передатчики с аналоговой стабилизацией частоты. -> 4 Watt FM Transmitter

Это небольшой но довольно мощный FM передатчик, имеющий три радиочастотных каскада, соединяющихся с аудио предусилителем для лучшей модуляции. Его выходная мощность 4 Ватта а питается он от 12-18 вольт постоянного тока, что делает его портативным. Это идеальный проект для новичков, которые хотят погрузится в восхитительный мир FM радиовещания и хотят схему, которая составит основу для экспериментов с этим..
Технические спецификации - Характеристики
Тип модуляции:........ FM
Диапазон частот: ...... 88-108 MHz
Рабочее напряжение: ..... 12-18 VDC
Максимальный ток: ....... 450 мА
Мощность на выходе: ....... 4 Вт

Как это работает Как уже говорилось, передаваемый сигнал - частотно модулированный (FM) это означает, что амплитуда несущей остается постоянной, а ее частота изменяется в соответствии с изменением амплитуды аудио сигнала. Когда амплитуда сигнала на входе увеличивается (т.е. в течении положительных полупериодов) частота несущей увеличивается тоже, с другой стороны когда амплитуда сигнала на входе уменьшается (отрицательные полупериоды или отсутствие сигнала) соответственно уменьшается частота несущей. На рисунке 1 вы можете увидеть графическое представление частотной модуляции, такой как она появляется на экране осциллографа, вместе с модулирующим звуковым сигналом. Исходящая частота передатчика изменяется от 88 до 108 МГц, т.е. полоса FM используемая для радиовещания. Схема, как мы уже говорили, состоит из четырех каскадов. Три радиочастотных каскада и аудио предусилитель для модуляции. Первый РЧ каскад - это генератор, он построен на основе TR1. Частота генератора контролируется LC цепочкой L1-C15. C7 находится там для обеспечения продолжения генерации а C8 регулирует емкостную связь между генератором и следующим РЧ каскадом, который является усилителем. Усилитель собран на основе TR2, который работает в классе C, вход которого настраивается изменением значений C10 L4. С выхода этого последнего каскада, который настраивается изменением значений L3-C12 снимается выходной сигнал, который через настроенную цепочку L5-C11 приходит на антенну. Схема предусилителя очень проста, она построена на TR4. Входная чувствительность регулируется, чтобы сделать возможным использование передатчика с различными входными сигналами и зависит от значения VR1. Передатчик может модулироваться напрямую с пьезоэлектрического микрофона, небольшого кассетного магнитофона и т.д. И конечно можно использовать аудио микшер для более профессиональных результатов.

Конструкция. Прежде всего позвольте нам рассмотреть некоторые основы сборки электронных схем на печатной плате. Плата сделана из тонкого изоляционного армированного материала с тонким слоем проводящей меди, проводящему слою придается такая форма, чтобы создать необходимые соединения между различными компонентами на плате. Очень желательно использование правильно спроектированной печатной платы, так как это значительно ускоряет сборку и уменьшает вероятность совершения ошибки. К тому же, комплект плат приходит с просверленными отверстиями и очертаниями компонентов с их обозначением на стороне компонентов, чтобы сделать сборку проще. Чтобы во время хранения защитить плату от окисления и гарантировать что вы получите ее в прекрасной форме, она залужена во время производства и покрыта специальным лаком, который защищает ее от окисления и делает пайку проще. Припаивание компонентов это единственный путь, чтобы собрать схему, и кстати от этого во многом зависит ваш успех или неудача. Это не слишком сложно, и если вы придерживаетесь некоторых правил, у вас не должно возникнуть проблем. Используемый вами паяльник должен быть легким и его мощность не должна превышать 25 Ватт. Жало должно быть тонким и все время чистым. Для этой цели есть очень удобные, специально сделанные губки, которые держат влажными, и время от времени вы можете вытирать о них горячее жало, чтобы убрать все остатки которые имеют тенденцию скапливаться на нем. НЕ ШЛИФУЙТЕ напильником или наждачной бумагой грязное или изношенное жало. Если жало нельзя отчистить, замените его. В магазинах есть множество различных типов припоя, и вам следует выбрать припой хорошего качества, содержащий флюс, чтобы каждый раз обеспечивать превосходное соединение. НЕ ИСПОЛЬЗУЙТЕ флюс для пайки, кроме того, что уже содержится в припое. Слишком большое количество флюса может явиться причиной многих проблем и одной из главных причин неправильной работы схемы. Если все - таки вам приходится использовать дополнительный флюс, как в случае, когда необходимо залудить медные провода, тщательно очистите его, по окончанию работы. Чтобы правильно и надлежащим образом спаять компоненты, вам следует сделать следующее: - Очистите ножки компонентов при помощи небольшого кусочка наждачной бумаги. Согните их на соответствующем расстоянии от корпуса компонента и вставьте его в плату на его место. - Иногда вам могут встретиться компоненты, с ножками большими чем обычно, они слишком толстые, чтобы войти в отверстия на печатной плате. В этом случае используйте мини дрель чтобы расширить отверстия. - Не делайте отверстия слишком большими, так как впоследствии это создаст трудности при пайке. - Возьмите горячий паяльник и поместите его жало на ножку компонента, пока держите кончик проволочного припоя в точке, где ножка выходит из платы. Жало должно касаться ножки немного выше платы.- Когда припой начнет плавится и течь, подождите пока он равномерно покроет всю область вокруг отверстия, а флюс закипит и выйдет под припоем. Вся операция не должна занимать более 5 секунд. Уберите паяльник и позвольте припою остыть самому не дуя на него или перемещая компонент. Если все сделано правильно, поверхность соединения должна иметь блестящий металлически кончик, а границы должны равномерно заканчиваться на ножке компонента и дорожке платы. Если припой смотрится неуклюже, ненормально, или имеет форму кляксы, тогда вы сделали плохое соединение, и следует убрать припой (С помощью насоса или паяльного фитиля) и повторить все действия. - Следите за тем чтобы не перегреть дорожки, так как их очень просто отделить от платы и порвать. - Во время пайки чувствительных компонентов, хорошей практикой будет держать пинцетом ножку со стороны компонентов, для отвода тепла, которое может повредить компонент. - Убедитесь что вы не используете припоя больше чем необходимо, так как можете сделать короткое замыкание дорожек, расположенных рядом, особенно если они очень близко друг к другу. - По окончанию работы, отрежьте все выступающие ножки компонентов и тщательно отчистите плату соответствующим растворителем, чтобы убрать все остатки флюса, оставшегося на плате. Это РЧ проект, а это требует даже бОльшей осторожности во время пайки, поскольку небрежность во время сборки может привести к низкой выходной мощности, или к ее отсутствию вообще, низкой стабильности и другим проблемам. Убедитесь в том, что вы следуете основным правилам сборки электронных схем, описанных выше, и проверяйте все дважды, прежде чем перейти к следующему шагу. Все компоненты понятно маркированы на стороне элементов платы, и вас не должно возникнуть проблем в определении их места и установки. Сначала припаяйте все выводы, а затем катушки, смотря за тем чтобы не деформировать их, затем дроссели, резисторы, конденсаторы, а в конце электролиты и подстроечники. Проверти установлены ли электролиты правильно, в соответствии с их полярностью, и не перегреты ли подстроечники во время пайки. На этом месте нужно остановиться для проверки сделанной работы, и если все в порядке припаивайте транзисторы на их места, следя за тем чтобы не перегреть их, поскольку они наиболее чувствительные из всех компонентов, использованных в этом проекте. Аудио сигнал подается на точки 1 (ground) и 2 (signal), питание на точки 3 (-) и 4 (+) антенна соединена с точками 5 (ground) и 6 (signal). Как мы уже говорили сигнал, который вы будете использовать для модуляции, может подаваться от предусилителя или микшера, а в случае когда вы хотите модулировать несущую голосом, можете использовать пьезоэлектрический микрофон, поставляемый с набором. (Качество этого микрофона не столь высоко, но он подойдет если вас интересует только речь.) В качестве антенны можно использовать открытый диполь или Ground Plane (схему этой антенны см. на рисунке прим. перев.) Перед началом использования или смены рабочей частоты, следует проделать процедуру, называемую настройкой и описанную ниже.

Список деталей

R1 = 220K
R2 = 4,7K
R3 = R4 = 10K
R5 = 82 Ohm
R = 150Ohm 1/2W x2 *
VR1 = 22K подстроечный

C1 = C2 = 4,7uF 25V электролит
C3 = C13 = 4,7nF керамический
C4 = C14 = 1nF керамический
C5 = C6 = 470pF керамический
C7 = 11pF керамический
C8 = 3-10pF подстроечный
C9 = C12 = 7-35pF подстроечный
C10 = C11 = 10-60pF подстроечный
C15 = 4-20pF подстроечный
C16 = 22nF керамический *

L1 = 4 витка посеребренной проволки на оправке 5,5mm
L2 = 6 витков посеребренной проволки на оправке 5,5mm
L3 = 3 витка посеребренной проволки на оправке 5,5mm
L4 = вытравлена на плате
L5 = 5 витков посеребренной проволки на оправке 7,5mm

RFC1=RFC2=RFC3= VK200 RFC tsok

TR1 = TR2 = 2N2219 NPN
TR3 = 2N3553 NPN
TR4 = BC547/BC548 NPN
D1 = 1N4148 диод*
MIC = crystalic microphone

Внимание: детали отмеченные * используются для настройки передатчика, в случае когда у вас нет стационарного волнового моста.

Настройки

Если вы ждете, что ваш передатчик будет отдавать максимум мощности в любое время, вам необходимо настроить надлежащим образом все 3 РЧ каскада, чтобы гарантировать что энергия между ними, течет наилучшим образом. Для этого есть два пути, и каким путем следовать зависит от того есть ли у вас КСВ метр. Если у вас есть КСВ метр, то включите передатчик, с подключенным последовательно к антенне КСВ метром, и крутите C15, чтобы настроить передатчик на частоту, выбранную вами для вещания. Затем регулируйте подстроечники C8,9,10,12 и 11 пока не добьетесь максимальной выходной мощности на КСВ метре. Для тех у кого нет КСВ метра, есть другой метод, который дает неплохие результаты. Нужно только собрать небольшую схему, изобр. на рис. 2, которая соединяется с выходом передатчика, на его вход (на C16) вы подключаете ваш мультитестер, имеющий подходящую размеченную шкалу вольт. Вы подстраиваете C15 на желаемую частоту, а затем настраиваете другие подстроечники в том же порядке как это описано выше, до максимального значения на мультитестере. Неудобство этого метода в том что вы не можете регулировать передатчик с подключенной на выходе антенной, что может быть необходимо при небольшой настройки C11 и C12 для наилучшего согласования антенны. Не забывайте регулировать ваш передатчик каждый раз после смены антенны или рабочей частоты. ВНИМАНИЕ: В каждом передатчике, кроме основной частоты, присутствуют различные гармоники, обычно имеющие небольшой радиус действия. Для того чтобы убедиться что вы не настроились на одну из них, проводите настройку как можно дальше от вашего приемника, или используйте анализатор спектра, чтобы посмотреть спектр на выходе и убедиться что вы настроили передатчик на правильную частоту.

ВНИМАНИЕ

Если устройство не работает. - Проверьте устройство на наличие плохого соединения, замыкания соседних дорожек или остатков флюса, которые обычно являются причиной проблемы. - Проверти еще раз все внешние соединения идущие к схеме и от нее, может ошибка в них. - Проверьте все ли комноненты установлены, и на свои ли места. - Убедитесь в том, что все компоненты имеющие полярность установлены правильно. - Убедитесь в том, что напряжение питания имеет верное значение, и подается на схему в соответствующем месте. - Проверти схему на наличие неисправных или поврежденных компонентов.

Передатчик на 10 Вт

Схема 1 (27 Мгц):

Q1 КТ904 на радиаторе площадью 600 см^2
L1 - диаметр 15 мм на керамическом каркасе. 5 витков серебрёного провода диаметром 1 мм, длина намотки - 20 мм, отвод от 2-го витка, считая от заземлённого провода.
L3 - бескаркасная, на оправе 8 мм, содержит 11 витков ПЭВ-2 диаметром 1 мм.
L2(дроссель) типа ДММ-2,4 (20 мкГн)
C1, C5, C6 - с воздушным диэлектриком.
L3 - бескаркасная, на оправе 8 мм, содержит 8 (6 на 94 Мгц) витков ПЭВ-2 диаметром 1 мм. Состоит из 2-х половин.
L4 - на той же оправе и тем же проводом, расположена между 2-х половин L3 и содержит 2-3 витка

Схема 3 (Частотный модулятор):

Q1 КТ315
D1, D2 - варикапы КВ102Д или диоды Д220.
ВМ1 - электретный микрофон МКЭ-3

Описание и настройка: Выбирете одну из 2-х высокочастотных схем (в зависимости от приёмника) и соедините её с модулятором в точке А. Далее в качестве нагрузки подключите к антенне и общему проводу 2 лампы 6,3 В(0.22 А), соединённые последовательно. Подключите питание 5 В. Отключите контур L1, C1, вместо него подайте на вход сигнал с УКВ генератора. Проверьте волномером частоту выходного сигнала (если его нет или она не как с генератора - подстройте конденсаторы и катушки выходного контура). Далее соедините контур L1, C1 и повышайте напряжение питания. Дoлжна возникнуть автогенерация уже при 5 В (если не возникает - переместите эмиттер по катушке на 0.5...2 витка) - ток 250 мА. Не поднимайте напряжение выше 20В(ток 750 мА, мощность 8...10 Вт). Далее подстройте все контура, проверяя частоту по волномеру. При монтаже (навесном, прямо на радиаторе) выводы деталей должны быть как можно короче, использоваться конденсаторыс соответствующим ТКЕ, катушки должны быть плотно намотаны. Только тогда вы получите хорошую стабильность частоты, иначе она будет "плыть" до 500 Гц. Частотный модулятор насттраивают, подбирая R1, когда напряжение на коллекторе Q1 станет равны половине питающего. Так же может потребоваться поключение точки А к части витков L1.

Фм передатчик своими руками на 1 км

Это достаточно мощный 2 Вт FM передатчик, который обеспечит до 10 км дальности, естественно при хорошо настроенной полноценной антенне и в хороших погодных условиях, без помех. Схема была найдёна в буржунете и показалась достаточно интересной и оригинальной, чтоб быть представленной на ваш суд))

Схема передатчика:


Схема печатной платы:

Здесь транзисторы включены по схеме мультивибратора, который работает на высоких частотах - около 100 мегагерц. Катушек как таковых нет, их роль выполняют полосковые проводники печатной платы. Это несколько упрощает сборку. Используйте антенну не менее метра, для достижения максимальной дальности. Частота передатчика может настраиваться в пределах 88-108 МГц с помощью конденсатора c5. Варикапы BB204 могут быть заменены обычными отечественными. Подбирайте по наилучшему качеству модуляции звуком.



Указанные в схеме FM передатчика 2N3553 ВЧ транзисторы могут быть заменены на 2N4427 или 2N3866. В крайнем случае задействуйте отечественные СВЧ, с хорошим запасом по частоте и мощности.

Первый опыт радиовещания можно получить, если построить трансляционный УКВ передатчик. С его помощью можно осуществлять музыкальные и тематические передачи в небольших поселках, в зонах отдыха, пляжах и других местах, где не ведется УКВ вещание или его прием затруднен. УКВ передатчик с целью упрощения конструкции можно построить всего на одной электронной лампе.

Принципиальная схема УКВ передатчика для небольших зон радиовещания приведена на рис. 28.1. Передатчик состоит из двухтактного высокочастотного генератора на двух триодах, составляющих лампу VL1.

Рис. 28.1. Принципиальная схема УКВ-передатчика для небольших зон радиовещания

Модулятор передатчика выполнен на варикапе VD1. Для питания передатчика может быть использован любой блок питания, дающий на выходе два напряжения: постоянное 250 В для питания анодных цепей и переменное 6,3 — для нити накала лампы. В основе передатчика лежит схема, которая хорошо опробирована и давно известна в радиотехнике.

Такая схема передатчика позволяет получить сигнал близкий к стандарту вещания УКВ ЧМ. В передатчике используется контурная модуляция, так как она позволяет получить высокие качественные показатели при небольшом количестве радиокомпонентов. Сигнал звуковой частоты от микрофона или магнитофона (с гнезд дополнительный громкоговоритель) подается на вход передатчика XS1, откуда через трансформатор на варикап VD1. В результате чего изменяется емкость варикапа VD1 и происходит модулирование сигнала несущей. Получившиеся электромагнитные колебания излучаются антенной передатчика WA1 в пространство, которые и принимаются антеннами УКВ радиоприемников. Данный передатчик работает на одной из фиксированных частот, лежащих в диапазоне 90... 100 МГц. Более точную частоту излучения радиоволн передатчика устанавливают изменением емкости конденсатора С7.

В принципе передатчик может быть настроен на любую частоту УКВ диапазона, нужно только изменить соответствующим образом параметры контура LI, С7. В передатчике используется штырьевая антенна длиной 2,1 м, расположенная на высоте 3...4 м. В качестве антенны используется дюралюминиевая или медная трубка диаметром не менее 18 мм.

Детали

В передатчике использована лампа пальчиковой серии 6НЗП, высокочастотный двойной триод. Резисторы R1...R4 типа МЛТ-0,5 с допуском сопротивления ±10%, резисторы R5, R6 типа МЛТ-2 с допуском сопротивления ±10%. Переменный резистор R7 типа СПЗ-ЗОв. Конденсаторы: С1, С2, С5, С6, СЮ типа КД-2; СЗ, С4, С7 — КТ-1, С8, С9 - БМ-2; СП, С12 - БМТ-2, а С13 - К50-12. Варикап Д902, указанный на схеме, можно заменить более совершенным, например, КВ 109В или КВ109Г. При использовании других типов радиокомпонентов следует иметь в виду, что они должны быть рассчитаны на напряжение не ниже 300 В.

Контурные катушки передатчика L1...L3 бескаркасные и намотаны медным проводом 01 мм на оправке 010 мм. Катушка L1 имеет 7 витков с отводом от середины, a L2, L3 — по 2 витка. При монтаже катушек на плате катушки L2 и L3 располагают на расстоянии 2 мм от каждого торца катушки L1. Оси катушек L1...L3 должны лежать на одной прямой. Дроссель L4 наматывается эмалированным проводом 00,4 мм виток к витку на ферритовом стержне 04 мм марки 600 НН. Дроссель L5 содержит 8 витков провода ПЭЛ 01,2 мм, намотанных виток к витку на оправке 010 мм. В качестве трансформатора Т1 можно использовать выходной трансформатор от любого радиоприемника или абонентского громкоговорителя. Высокоомная обмотка (содержащая большое количество витков провода) трансформатора подключается к резисторам R1 и R2. В данной конструкции передатчика использован трансформатор от абонентского громкоговорителя.

Большая часть детали передатчика монтируются на печатной плате размером 107x76 мм из фольгированного стеклотекстолита толщиной 2 мм (рис. 28.2). При монтаже ламповой панельки ее лепестки отгибаются и припаиваются непосредственно к печатным дорожкам. Навесным монтажом крепят детали L4, С14, R6, С13. После монтажа плата вместе с блоком питания помещается в металлический корпус. На передней панели корпуса крепится переменный резистор R7, а в верхней его части — разъем для подключения антенны. Возле резистора R7 следует расположить трансформатор Т1. Между блоком питания и платой передатчика устанавливают металлический экран. Для подключения антенны к передатчику используется кабель типа РК-1, можно также использовать кабели типа РК-49 или РК-75.

Передатчик, собранный из исправных деталей, при включении питания начинает сразу работать. Вращая ось переменного резистора R7, устанавливают глубину модуляции, при которой нет искажений и модуляция имеет достаточную глубину.

Рис. 28.2. Печатная плата и монтаж на ней деталей УКВ-передатчика для небольших зон радиовещания

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Возбудитель FM передатчика с синтезатором частоты February 13th, 2012

Возбудитель выполняет функции получения стабильного, малошумного, спектрально чистого радиосигнала, промодулированного сигналом звуковой частоты, подаваемой на вход с тракта аудио, и усиления данного ВЧ сигнала до величин, пригодных для раскачки выходного усилителя мощности.
Мой синтезатор собран по схеме генератора с фазовой автоподстройкой частоты (ФАПЧ), перекрывающего FM диапазон с шагом 100 кГц.
Генератор плавного диапазона (ГПД) может перекрыть всего лишь несколько мегагерц с необходимой стабильностью и приемлимыми шумами без дополнительной подстройки. Выходная мощность регулируется от нуля до 4-х ватт. Детектор обрыва обратной связи ФАПЧ выключает передатчик при неисправности синтезатора.

На чертежах представлены обе стороны платы, поэтому вы можете напечатать их и совместить на просвет необходимые отверстия. Вы должны напечатать чертёж в зеркальном отображении, чтобы получить залитыми краской места, в которых останется медь.
Данная плата опаяна по периметру полосками металла. Это лучше сделать до установки деталей.

Данная монтажная схема показывает расположение элементов на плате. Вы можете понять, что здесь изображено, пользуясь принципиальной схемой. Это довольно просто. Будьте внимательны, один элемент схемы НЕ показан на рисунке! Он должен быть установлен после, во время настройки, под платой! Чтобы сделать процесс более увлекательным и для того, чтобы вы хорошо разобрались в конструкции, я НЕ скажу вам, что это за деталь! Вы узнаете её после сборки, она окажется лишней! :-)
Чертежи катушек довольно близки к их истинным размерам.

Здесь показан возбудитель в сборе! Некоторые пояснения по поводу аллюминиевой детали в районе выходново транзистора. Я сделал её на своём любительском токарном станке.
Это довольно сложный способ обеспечить тепловой контакт корпуса транзистора TO-5 с радиатором! Простейший кронштейн вроде бы вполне должен подойти. Моя первоначальная идея была прикрутить его к шасси, либо к борту вокруг платы. Но схема работает настолько эффективно, что транзистор не нуждается в дополнительном радиаторе! Я провёл испытания и, в конце концов, оставил всё так, как показано на рисунке, ничего не добавляя.
Многие детали взяты от списанного оборудования. В том числе, подстроечные конденсаторы и дроссели. Но вполне можно подобрать замену и из современных деталей. Кварц производства JAN Crystals. Для того, чтобы вогнать его на нестандартную частоту 6.4 МГц параллельного резонанса, применён конденсатор 30 пФ, со стандартной температурной стабильностью.
Сигнал снимается с выхода с помощью разъёма BNC. Все остальные соединения выполнены с помощью проходных конденсаторов. Конструкция снабжена крышками из того же металла, что и бортики по периметру. Это ни что иное, как разрезанные кофейные банки! Так же подойдёт металл от упаковки некоторых сортов шоколада, либо пирожных! (примечание переводчика: банки отечественной сгущёнки из прекрасной облуженной жести)
Настройка схемы несложная. Во-первых, установите все КПЕ в среднее положение и установите переключателями частоту. Для этого уясните простой принцип: самый младший переключатель имеет вес 100 кГц, второй 200 кГц, следуюущий 400 кГц, и так далее, до последнего, который весит все 12,8 МГц. Девятый переключатель добавляет 76,8 МГц, а десятый - 102,4 МГц. Перед тем, как выставить переключатели в нужное положение, разложите нужную вам частоту на двоичные компоненты. Обратите внимание: переключатель в положении "включено" НЕ добавляет вес в общую сумму! Например, если вы хотите вещать на частоте 96,5 МГц, вы должны поставить переключатели 9, 8, 7, 3 и 1 в положение "выключено", а остальные во "включено". Весь диапазон, который можно установить переключателями синтезатора, перекрывает FM и даже захватывает соседние, но схема рассчитана на работу в вещательном диапазоне.
Теперь вы должны подать напряжение 15 В только на питающий контакт основной части схемы, подключив вольтметр к выходу операционного усилителя U3, и частотомер к коллектору транзистора Q4. Если у вас получилась на выхоте нужная частота, вы поймали удачу за хвост и выиграли лотерею! Обычно, ГПД болтается где-то за пределами диапазона. Если вольтметр показывает около 14 В, это означает, что частота черезмерно низкая. Если показания около нуля, это говорит о черезмерно высокой частоте. Частотомер должен подтвердить это. Вы должны вогнать ГПД в диапазон. Для этого можно менять как ёмкость C20, так и индуктивность L4. Обычно конденсатор не даёт регулировку частоты во всём диапазоне, и тогда остаётся только мять катушку. Когда вы сумеете правильно настроить ГПД, ФАПЧ засинхронизируется, и вы получите на выходе сигнал со стабильной частотой, что и было нужно. Подкрутите L4 и C20, чтобы на вольтметре получилось около 9 В. В этом диапазоне напряжений получается наиболее низкий уровень фазовых шумов варикапов, потому что управляющее напряжение значительно выше детектируемого ВЧ. В идеале, вы должны получить эти 9 В в центре вещательного диапазона. Но это можно легко сделать позже.
Теперь с помощью C12 выставите точную частоту кварцевого генератора, ориентируясь на показания частотомера. Он должен показывать ровно установленную ранее переключателями частоту в вещательном диапазоне.
Перейдём к усилительным каскадам: Подсоедините к выходу эквивалент нагрузки 50 Ом и измеритель мощности и подайте несколько вольт питания на контакт запитки усилителя мощности. Настройте C28, C32, C37 и C38 по максимуму выходного сигнала. Если диапазона регулировки конденсаторов не будет хватать, помните L5, L7, L11, L10. Теперь увеличьте напряжение питания и снова поднастройте ёмкости. Вы должны получить 4-5 Вт при напряжении питания 15 В.
Для устранения микрофонного эффекта, после сборки и настройки, залейте катушку ГПД, а быть может, и других каскадов, пчелиным воском, либо другим подходящим материалом. После этого возможно, будет нужно слегка подстроить контуры заново.
Теперь подключите звуковой тракт к возбудителю. Подайте на вход звуковой сигнал, строго контролируя уровень, и установите резистором R68 девиацию +/- 75 кГц. Если у вас нет измерителя девиации, включите FM приёмник, поймайте местные станции и выставите эквивалентную громкость приёма своего передатчика. Но этот способ имеет заметную погрешность, лучше всё же по прибору.
Если вам понадобится изменить частоту передачи, запрограммируйте её снова переключателями, а затем подстройте весь тракт, за исключением C12, подстраивать который надо лишь раз в несколько лет, по причине старения кварца.

Похожие публикации