Андроид. Windows. Антивирусы. Гаджеты. Железо. Игры. Интернет. Операционные системы. Программы.

Тип датчика мыши. Оптическая лазерная или светодиодная мышь, что лучше? Оптическая светодиодная мышь

Существует множество типов и вариантов исполнения ковриков для мышек. Они могут иметь рабочую поверхностью из ткани, мягкого или твердого пластика, металла. Первый вариант самый дешевый и, как ни странно, один из самых лучших. Для мягкого пластика, да и для жесткого тоже, существуют варианты исполнения под оптические и лазерные мышки.

Для тестов использовались обычные коврики Nova MicrOptic+ и Defender Ergo opti-laser. Внешний вид у них примерно одинаковый:

По заверениям обоих производителей эти коврики оптимизированы для работы с лазерными мышками. Проверим.

Для начала снимки поверхности с увеличением:

Кое-какие отличия есть, но не особенно заметные. У коврика Nova зерна меньше и не так явно выражены. Значит он хуже?

Теперь посмотрим на коврики глазами оптического датчика:

Согласитесь, что отличие есть и весьма кардинальные. На коврике Nova отчетливо видна высококонтрастная структура, а вот Defender дал какое-то "мыло". Скорее всего, это связано с размерами "гранул". У лазерных датчиков, в отличие от оптических, видимый размер окна уменьшен. Похоже, на коврике Defender размер гранул больше окна и датчик захватывает только их часть, постоянно переключаясь между монотонно светлыми и темными участками. Для сравнения, приведу фотографии поверхности пластика .

Правый рисунок получен из левого повышением контрастности. Мышка эту поверхность видит так:

На такой поверхности "офисные" оптические мышки совсем не работают, а вот лазерные как-то умудряются работать и весьма успешно.

Высота отрыва

Что Вы делаете, когда мышка доходит до края коврика? Вы поднимаете мышку и переставляете на новое место, в центр коврика. Оптический датчик обладает высокой чувствительностью и при подъеме пытается сохранить нормальное функционирование, постоянно подстраивая параметры аппаратуры. Как следствие, при подъеме мышки над поверхностью снижается скорость. Точнее, скорость то не снижается, а довольно резко падает качество и достоверность определения движения. Теоретически, при снижении качества поверхности ниже разумного, оптический датчик должен перестать выдавать движение. То есть, при некотором подъеме мышки он должен бы не замечать, что мышь подняли, а если ее еще хоть чуть поднять, то просто перестать передавать движение. Это в идеале, но в реальных мышках при ухудшении поверхности происходит деградация качества движения, передаваемого мышью. Причем, этот вредный эффект зависит от скорости перемещения, из-за чего к такой мышке труднее привыкнуть.

Высота отрыва светодиодных мышек 1.5-2 мм, для лазерных версий цифра больше и составляет уже 2.5-4 мм. Это все цифры, а в реальности такой мышкой неудобно пользоваться даже для офисных приложений, очень уж высоко приходится поднимать ее над ковриком. По моим личным впечатлениям, высота срыва в 1.5-2 мм довольно комфортна. А что же делать с лазерными мышками и их высотой срыва 4 мм?

Давайте возьмем одну за хвост и посмотрим на внутренности. Сейчас распространены мышки на датчике Avago(ссылка на http://www.avagotech.com) ADNS-6010

Чтоб особо не умничать, взял картинку из документации.

Пояснения:

  • Sensor - микросхема ADNS-6010, которая и является датчиком, считывающем движение
  • Sensor PCB - печатная плата мышки
  • VCSEL - лазерный излучатель. Просто небольшой полупроводниковый лазер с посредственным углом расхода луча.
  • VCSEL PCB - небольшая печатная платка, на которой смонтирован лазер.
  • VCSEL Clip - пластиковая защелка, фиксирует лазер в оптической системе. На картинке светло желтого цвета.
  • Lens - оптическая система из прозрачного пластика, блекло-желтого цвета.
  • Surface - поверхность, по которой движется мышь.
  • На этом рисунке указана цифра 2.4 мм - это оптимальное расстояние от дна оптической системы до поверхности. Один момент - дно мышки имеет какую-то толщину, поэтому расстояние от поверхности до дна мышки будет меньше на толщину этого дна.

    А от чего же зависит высота отрыва и почему на оптических мышках эта высота меньше? Посмотрим другую картинку:

    Позволил себе проявить самодеятельность раскрасить некоторые важные элементы конструкции.

    Желтым цветом выделены линзы оптической системы, серым - световой поток лазера. Зеленый - зона видимости оптического датчика. Зона "видимости" датчика определяется только его фокусом и способностью работать с расфокусированным изображением. Чем выше скорость перемещения картинки, тем должна-бы быть хуже устойчивость для несфокучированных объектов. Если посмотреть данные тестирования, то так и выходит. Высота срыва в 4 мм не функциональна, я попробовал уменьшить эту величину несколько изменив принцип работы - потеря изображения датчиком может быть получена не за счет ухудшения фокусировки, а из-за ухода светового пятна из зоны видимости датчика. Примерно так работают светодиодные мышки. Для этого я увеличил угол луча подсветки с 21 градусов до, примерно, 50 градусов от вертикали.

    При подъеме мышки пятно подсветки (серый луч) выходит из видимого окна датчика (зеленая зона).

    Методика доработки не особо трудна - надо распилить оптический блок по вертикальной черте и не задеть линзы. В крайнем случае, можно чуть-чуть повредить линзу подсветки, она не столь важна. Скрепить две составные части можно термоплавким клеем, на рисунке отмечено коричневым.

    Он обладает достаточной жесткостью и прочностью соединения, при этом позволяя осуществлять многократную коррекцию положения склеенных частей оптики. При наклоне подсветки часть его конструкции выйдет за габариты блока оптики и его придется немного подпилить, на рисунке отмечено голубым цветом.

    К сожалению, блок подсветки надо не только наклонить, но и сдвинуть вниз, из-за чего линза подсветки окажется ниже уровня оптики. Это плохо, в дне мышки придется выплавлять небольшую вмятину под выступ. Впрочем, это не сложно и не мешает, ведь линза выходит за габариты совсем чуть-чуть. Лазерный модуль закреплялся на оптике с помощью защелки VCSEL Clip. Сейчас ее придется убрать и закрепить каплей клея или герметика. Хотя, он и так там неплохо держится. У такого построения есть одна особенность - луч подсветки падает на поверхность с другим углом, чем угол зрения датчика. В результате, между плоскостью поверхности и плоскостью отражения образуется угол около 15 градусов.

    Черный - луч на не доработанной оптической системе, зеленый - после доработки. Поверхность для доработанного случая условно поднята, чтобы она не сливалась с нормальным режимом. Датчик смотрит как бы сбоку на поверхность и четче видит все неровности на ней. Дополнительный наклон подсветки дает дополнительную модуляцию яркости при прохождении объемных областей под объективом. Хорошо сие или плохо - зависит от коврика, фактуры его поверхности. К слову, если снять картинки поверхности коврика Nova на этой, доработанной, мышке, то на фото не будет таких четких граней. И, скорее всего, дело не в фокусировке. Просто изменился угол зрения и четкие структуры коврика исчезли. На этой мышке коврик Nova и Defender выглядят почти одинаково. Впрочем, мышка хорошо ходит по обеим поверхностям. Увы, есть и явный недостаток - из-за того, что поверхность отражения наклонена относительно поверхности коврика, уменьшается общий уровнь освещенности и возникает необходимость увеличения тока лазера подсветки. Обычно он составляет цифру в районе восьми миллиампер. После доработки пришлось повысить ток до 12 миллиампер. Это уже многовато, но в пределах доступного.

    Если Вы дорабатывается обычную, серийную мышь, то хорошо бы несколько помочь схеме автоматического управления током лазера. В документации на датчик ADNS-6010 упоминается резистор Rbin с 13 вывода микросхемы. Обычно, его номинал 12.7 ком. Для того, чтобы подправить ток, надо уменьшить его номинал. Для моего случая хорошо-бы увеличить ток в 1.5 раза, что означает припаивание параллельно этому резистору еще одного с номиналом в 2 раза больше, т.е. 24-27-30KOm. И еще пара поверхностей - тканевая и лист алюминия. Довольно часто слышно рекомендации применять эти поверхности, они дают весьма неплохие результаты.

    Вначале на мышке с не модифицированной оптикой (W-Mouse 730). Ткань:

    Лист алюминия:

    И мышка после модификации оптического блока (W-Mouse 750).

    Лист алюминия:

    На поверхности с объемным рельефом модификация оптики приводит к большей заметности этого рельефа. А вот картинка с листа алюминия выглядит скорее хуже, но не столь существенно. Бесплатно ничего не бывает. Тронули оптику - получили проблемы с фокусировкой.

    Рекомендация - при повторении подобной доработки не увлекайтесь! Вряд ли стоит настолько сильно увеличивать угол блока подсветки, ведь высота срыва получается слишком малой и появляются неприятные проблемы с упихиванием в корпус и увеличением тока лазера.

    Есть и более простой способ уменьшить высоту срыва - поставить кнопку на дно мышки и при ее подъеме отключать, блокировать датчик. Средств воздействия много, вначале я пробовал отключать лазер, но контроллер в А4 умный и, если просто размыкать ток лазера, контроллер очень быстро это замечает и отключает мышь. Увы, отключает совсем, приходится перетыкать разъем USB, придется поступать не столь прямолинейно. Есть предложение при отключении лазера подсоединять вместо него пару кремниевых диодов, но это потребует установку дополнительных компонентов. Я поступил иначе - воздействовал на резистор Rbin (смотрите документацию на датчик ADNS-6010), при увеличении его номинала система авторегулирования пытается выставить такой ток. Если Rbin отсоединять или делать очень большим, то лазер фактически отключится, но это не вызовет каких-то проблем внутри системы регулирования.

    Саму "кнопку" я взял из дисковода 3.5" с датчика наличия дискеты. Усилие небольшое, но и его пришлось немного ослабить. Идея работала хорошо, высоту можно подобрать какую заблагорассудится, вот только пластмассовый штифт кнопки быстро стачивается.

    Оптические мыши точнее лазерных. Чем DPI выше, тем лучше. Акселерация – зло. Беспроводные мыши лагают. Значение чувствительности мыши в настройках Windows нужно ставить на 6.

    Если вы хоть что-нибудь из этого поняли, то, вероятно, вы уже потратили какое-то время на чтение различных статей о выборе игровой мыши, пытаясь выяснить, что же на самом деле имеет значение.

    В сети существуют странные, исключительно подробнейшие статьи и форумные посты о каждом аспекте игровых мышей (дрожания, акселерации и считывание на дюйм), причём многое из этого наполнено устаревшей информацией, техно-вуду и интернет-фольклором. Я попытался выяснить правду о некоторых наиболее запутанных элементах технологии игровых манипуляторов, и развеять некоторые из самых распространённых заблуждений.

    Миф – оптические мыши лучше лазерных

    Вывод: верно , но всё несколько сложнее. Лазерные мыши, на самом деле, это оптические для новичков.
    Это, пожалуй, самое распространённое мнение об игровых мышах, какое только можно встретить в сети. Оптические мыши лучше и точнее лазерных. Лазерные мыши просто барахло! Увы, но всё чаще и чаще в игровые мыши ставят лазерные сенсоры, делая из оптических редких и особенных зверьков. Так пишут в Интернете. А как дела обстоят на самом деле?

    Для начала, между лазерными и оптическими сенсорами больше общего, чем вы можете себе представить.

    В лазерных мышах, по правде говоря, вовсе не лазерный сенсор, а оптический. Просто он использует лазерную подсветку. Однако людям проще свести все к оптике против лазера, хотя, на самом деле, это инфракрасный или красный LED (в оптических мышах) против VCSEL (поверхностно-излучающий лазер с вертикальным резонатором). Всё ещё LED, но уже лазер. Все сенсоры за секунды снимают множество тысяч кадров, исходя из сравнения которых и определяется направление и расстояние движения манипулятора.

    И оптические мыши, и те, что с лазерной подсветкой, для съёмки поверхности под собой используют CMOS сенсоры, и по этим изображениям определяется движение мыши. Этот сенсор похож на тот, что установлен в вашем смартфоне или цифровой камере, хотя работает он совсем иначе (например, делает тысячи снимков в секунду). А раз сенсор тот же самый, чем же оптика «лучше» лазерной подсветки?

    У лазера другой длина волны, делающая его больше похожим на материю, чем на LED излучение. Это делает лазер более чувствительным к неровностям поверхности. Свет LED же менее чувствителен, его проще восстановить. На поверхности есть пики, которые он и считывает.

    Если вы поближе взглянете на тряпичные коврики, то увидите, что они сотканы из волокон, и лазер прекрасно «видит» их структуру. Но никому это не нужно, когда всё, что необходимо, это измерить пройденное мышью расстояние. Лазер же углубляется под поверхность, где, особенно на низких скоростях, действует по-другому. Вот почему между низкой и высокой скоростями такая разница.

    Сенсоры с лазерной подсветкой необычайно хорошо работают на жёстких ковриках, но на мягких, с большей глубиной поверхности, они собирают слишком много бесполезной информации, что приводит к разнящейся эффективности на разных скоростях. Это то, что большинство называет «акселерацией» или «погрешность разрешения из-за скорости».

    И всё-таки, насколько велика разница между оптическим сенсором и сенсором с лазерной подсветкой? У последних есть 5-6% отклонений при считывании на разных скоростях. У лучших оптических сенсоров этот параметр ниже 1%.

    Миф – проблема «акселерации» – мышь по-разному ведёт себя на разных скоростях движения

    Вывод: ложь . Проблема реальная, но термин «акселерация» в данном случае неприменим. Эксперты Logitech предлагают две альтернативы: «погрешность разрешения из-за скорости» и «зависящая от скорости вариативная точность».

    Акселерация – крупная, сложная проблема. Вот как её обычно описывают в Интернете: если быстро погонять мышь по коврику, а затем медленно вернуть её в точку, откуда начали, курсор тоже должен вернуться к первоначальной позиции. Если нет, мышь страдает от некой формы акселерации, что значит, по-разному считывает разные скорости движения. Плохо, да? Нам ведь нужно, чтобы мышь и курсор двигались в унисон, а иначе, в напряжённой перестрелке в FPS, это может привести к промахам.
    Так что же вызывает эту проблему? И почему «акселерация» – неудачное название?

    Акселерация, как пишут люди в Интернете, наблюдается лишь на определённом семействе сенсоров с лазерной подсветкой. Это погрешность точности относительно скорости, с которой перемещается мышь. Сам манипулятор не имеет никакой собственной акселерации, ни позитивной, ни негативной. Сложность в том, чтобы заставить курсор переместиться на то же расстояние, что с разной скоростью проходит мышь. Действительно, проще выговорить «у лазера есть акселерация».

    Если назвать акселерацию «погрешностью разрешения из-за скорости», важно отметить, что «разрешение» не имеет ничего общего с качеством изображения (не стоит думать об этом, как о 1080р, 4К и прочем). Разрешение – это связь между движением руки и пройденным на экране расстоянием. Параметр, складывающийся из того, сколько пикселей на экране преодолевается при перемещении мыши на один дюйм.

    Так вот, ни курсор, ни сенсор не ускоряются, когда вы двигаете мышью с разной скоростью. Проблема в несовпадении данных, которые манипулятор считывает при движении с разным ускорением. Объяснять, почему так происходит, довольно сложно, а мы и так углубимся в технические дебри в разборе следующего мифа о DPI. Но, если упростить, погрешность разрешения из-за скорости возникает от того, что сенсор мыши принимает слишком много шума в сделанным им снимках рабочей поверхности. И, как вы помните из предыдущего мифа, такая особенность больше свойственна манипуляторам с лазерной подсветкой.

    При движении мыши сенсор лишь одно направление считает «правильным»: то, в котором вы её передвигаете. Когда сенсор начинает принимать шум, тот преобразуется в «считывание» движений в ложных направлениях – например, мельчайшие рыки вверх и вниз, пока вы уводите мышь в сторону. Добавление подобных ложных считываний «меняет число считываний, которые получаем в конце перемещения мыши. Так, вы сдвигаете мышь строго горизонтально, но ваша система теряет часть этого движения, принимая его как вертикальное, в результате чего траектория будет короче».

    Миф – чем выше DPI, тем лучше

    Вывод: ложь . Некоторые значения DPI (6000 и выше) просто смехотворно велики для размеров и разрешения современных мониторов, да и многие мыши оснащены сенсорами, не приспособленными для таких значений, что негативно сказывается на производительности.

    Если вы когда-либо следили за рынком смартфонов или цифровых камер, вы должно быть, знакомы с гонкой за мегапикселами: камеры наращивали разрешение, поскольку это прекрасно для маркетинга. Но на качество фотографии влияет множество других факторов, вроде качества линз и истинного размера пиксела на CMOS матрице. Вот почему камеры в айфонах становятся год от года всё лучше, оставаясь с 8-ю мегапикселами со времен iPhone 4S.

    Это же справедливо и для сенсоров, применяемых в игровых манипуляторах. Так вот, высокий DPI вовсе не обязательно плох. Ведь 30 мегапиксельный DSLP сенсор может быть фантастическим, верно? Проблема с высокими значениями DPI мыши в том, как сенсорам удаётся достигать таких показателей.

    Нужно понять, как работает CMOS сенсор в мыши. Его матрица намного меньше, чем в цифровой камере, и у неё нет глубины цвета. Но она может делать тысячи снимков в секунду. К примеру, Logitech G502 может снимать 12000 кадров в секунду. Сравнивая эти снимки, сенсор определяет направление движения мыши и пройденное ею расстояние.

    Разрешение мыши отличается от того, что называют этим словом в цифровых камерах, где это связано с числом пикселов в матрице. Оптический сенсор работает не так. Его разрешение – это число пикселов на столе. Представьте себе пиксель (у нас же линзы и оптическая система), решите, какой он величины, вот здесь, на столе. Теперь решите, сколько их войдет на отрезок в один дюйм. Вот это и есть разрешение. К примеру, на матрице один пиксел – 30 микрон. Сколько таких тридцатимикроновых малышей войдет в один дюйм?

    Если CMOS сенсор использует пиксели в 30 микрон, его разрешение составит около 840 DPI или CPI, то есть, число считываний, которые сделает мышь, пройдя один дюйм. А вот дальше всё усложняется: у мыши с 8400 DPI вовсе не обязательно размер пиксела в 10 раз меньше, как, по идее, должно быть. Почему? Потому что DPI часто повышается делением реальных пикселов на всё меньшие и меньшие доли. И этот тот момент, когда более высокий DPI оказывает медвежью услугу.

    Физическое разрешение так и остаётся один пиксель, но система способна видеть менее одного благодаря обработке кадра, она способна понимать фракции пикселов. Если система мощная, то может различить, скажем, одну восьмую часть пиксела. То есть, берёте пиксел, делите его на восемь частей, затем эти минипикселы в одну восьмую от 30 микрон выкладываете на стол. Сколько таких войдет в один дюйм? Очень много, но ведь изначальное разрешение не изменилось, это всё ещё нативный физический пиксел.

    Обработанное разрешение, создаваемое алгоритмами сенсора, позволяет оперировать гораздо большим количеством нарезанных «пикселов», но для точности это бесполезно. Всё, что вы получаете – скорость. Чтобы получить одно считывание, мышь надо сдвинуть совсем на чуть. Пикселы крохотные, одна восьмая от 30 микрон, и, благодаря этому, чувствительность очень высокая, гораздо выше, чем на системе с большими 30 микронными пикселами.

    Иллюстрация уровня шума на примере wi-fi роутера.

    Каждый сенсор манипулятора принимает определённое количество валидных сигналов и определённое количество шума, так называемый уровень шума. Представьте себе, что вы работаете с полноценными 30 микронами: будет (относительно) просто отфильтровать сигнал от шума. А теперь попробуйте вообразить тот же процесс с одной восьмой объема данных. Чем больше вы делите пиксел, тем теснее сходятся сигнал и уровень шума, тем сложнее отделить необходимые данные от мусора. Когда система уже не может их различить, сенсор начинает передавать шум, что выражается в неточных движениях.

    Вот в чём опасность повышения DPI, если главный инженер не понимает базовых возможной сенсора. Если нацелиться лишь на высокое значение DPI, и весь дизайн строить вокруг этого, проект ждет неудача, система на выходе получится слабая. Она будет страдать, что называется, ложным движением, это когда вы ничего не делаете, просто оставляете мышь на столе, а курсор сам потихоньку ползёт в сторону, собирая шум и создавая считывания. Вот она, проблема неправильного дизайна. Верный же подход заключается в том, чтобы разработать мышь для низкого разрешения, крепкую и надёжную систему, не гнаться за высоким разрешением, ломая все законы дизайна и разработки.

    Во многих игровых мышах, в особенности с лазерной подсветкой, используются сенсоры, спроектированные годы назад. Апгрейд манипулятора модели 2013 года до модели 2015 может обойтись тем же сенсором, но предложить больший DPI благодаря дроблению изначального разрешения. При делении пикселов получается больше шума, а потом достигается тот предел, когда сенсоры старых поколений начинают массово снимать уж совсем подозрительные кадры.

    И это плохо. Просто ужасно. Конечно, это не означает, что манипулятор со старым, c разогнанным DPI сенсором будет хуже при любых условиях. При низких значениях DPI он будет работать, как и старая модель, поскольку этот параметр будет близок (или равен) его изначально спроектированной величине. Но задерите DPI вверх до упора, и вы увидите всё: ложное движение, погрешность разрешения из-за скорости, рябь курсора и прочие проблемы. Поэтому, наблюдая выход на рынок новой мыши, хвалящейся высокими значениями DPI, будь осторожны. Всякое может быть.

    Миф – проводные игровые мыши быстрее и точнее беспроводных

    Вывод: это было истиной на протяжении многих лет, но сейчас вы, вероятно, не увидите разницы между хорошей беспроводной мышью и обычной «хвостатой».

    Во время тестирования беспроводных игровых мышей у меня был и хороший опыт, и не очень. Были те, что лаговали, а были и такие, что работали на уровне проводных. У многих беспроводных игровых мышей частота опроса не превышает 500 гц, в то время как проводные обычно предлагают 1000 Гц. В последнем случае данные посылаются мышью на ПК каждую 1 миллисекунду вместо 2, как у беспроводных. Если вы исключительно, невероятно чувствительны к отклику мыши, вы, быть может, заметите разницу. Но помните, что у большинства мониторов частота обновления всего 60 Гц или, в лучшем случае, 144 Гц. Вы скорее заметите проблемы в работе мыши, связанные с качеством сенсора, чем с частотой опроса.
    Франсуа Морьер твердо уверен в том, что можно создать превосходную беспроводную игровую мышь, главное, чтобы проект изначально опирался на беспроводную модель.

    Всё начинается с сенсора. Если говорить о беспроводном дизайне, то сенсор – наиболее требовательная часть продукта. Если поставить в него сенсор, спроектированный для проводной мыши, то всё упрётся в малый срок автономной работы и, возможно, большой отклик, поскольку ради сохранения энергии придётся пойти на компромисс с остальными модулями. И это всё последствия непродуманного дизайна. Но, если вы понимаете, что требуется игроку, в какой момент ему нужен отклик, а в какой он его не заботит, вы сможете оптимизировать проект. Получить приличную автономность и сохранить замечательную производительность.

    Если вы пользуетесь беспроводной игровой мышью, держите приёмник на столе, поближе к мыши. Случайные радиосигналы от телефонов, роутеров и других устройств могут вмешиваться в работу и снижать эффективность манипулятора. Ограничивая подобные возможные вмешательства, вы, скорее всего, не отличите свою мышь от проводной.

    Миф – чувствительность мыши в Windows должна быть установлена на 6 из 11

    Вывод: для игр – ложь , поскольку ни одна современная игра не использует настройки указателя из ОС.
    Настройка на 6 из 11 в Windows, предположительно, даст вам ощутить работу мыши и движение курсора в ОС идеальнейшим образом. Правда в том, что для обычной работы в Windows вам вообще не следует трогать этот ползунок. К примеру, если вы поставите его на 11/11, то мышь начнет пропускать считывания и глючить.

    А что с играми? Для них эти настройки не имеют значения. Большинство игр работают с мышью напрямую, обходя все установки операционной системы. Нет ничего страшного в том, что скорость указателя будет установлена на 6/11, но в играх, вышедших за последние полтора десятилетия, вы не увидите никакой разницы.

    Миф – MX 518 до сих пор остается лучшей игровой мышью

    Вывод: ложь , но ностальгия – это прекрасно.

    Нет на свете игровой мыши более обожаемой, чем Logitech Mx 518, выпущенная в 2005 году. Ещё есть игроки, которые приносят на ней клятвы. Бесспорно, в свое время это была великолепная мышь, но любой, кто всё ещё считает её лучшей, упускает из виду огромный шаг вперёд, сделанный манипуляторами с 2005 года: более высокие значения DPI (иногда это может быть плохо, как мы уже разобрались выше, но существует множество мышей, которые легко бьют 1600 DPI MX 518 без страшных потерь), более высокая частота опроса и годы исследований в эргономике и использовании материалов.

    Более значительно то, что одна из самых очернённых ныне функций мышей, названная (prediction), появилась в MX 518. Предсказание, также известное как сглаживание углов (angle snapping), сглаживает движения мыши, помогая прочертить прямую линию. Для гейминга, очевидно, оно не особо нужно, поскольку там требуется точная корреляция движений, а не мышь, пытающаяся предсказывать их. Хотя современные игровые мыши часто предлагают возможность отключения предсказания, оно почти всегда и так выключено на уровне драйвера. В MX 518, однако же, оно было включено по умолчанию. И без возможности отключения.

    Миф – если заклеить половину сенсора мыши, это поможет снизить расстояние отключения мыши при её поднятии

    Вывод: ложь . Технически, это работает, но идея плохая, так как негативно сказывается на работе сенсора.
    Расстояние отключения – точка, на которой мышь прекращает считывать поверхность под собой. Для определённой группы игроков, играющих с низкой чувствительностью (чаще всего в старые игры, вроде Counter-Strike 1.6), низкое расстояние отключения очень важно, потому как они часто поднимают мышь и переставляют её на другую сторону коврика.

    Если это расстояние слишком велико, сенсор продолжит считывать поверхность после понятия, что вызовет нежелательное движение курсора. Лайфхак с заклеиванием части сенсора призван решить эту проблему.

    Лента скрывает часть света, испускаемого LED, что уменьшает время, за которое сенсор понимает, что мышь оторвана от поверхности. Возникает такое чувство: «Ура, я уменьшил это расстояние!», а, на самом деле, вы к этому ещё и снизили скорость работы мыши. Работать остается лишь половина матрицы, что негативно сказывается на скорости считывания. Низкие скорости это затрагивает не так заметно, но для высоких на некоторых поверхностях это может оказаться критичным. Сомнительный компромисс. Обычно, если человек доволен таким положением, он не слишком высокоскоростной игрок, и вполне может смириться с этим. Но, правда же, оно того не стоит.

    На сегодняшний день несколько «мышиных» компаний предлагают функцию калибровки поверхности, которая подстраивает мышь под рабочую поверхность, а затем и позволяет задать расстояние отключения. Это уж точно лучше, чем заклеивание сенсора лентой, потому как сохраняет высокую скорость работы манипулятора. Большое расстояние отключение типично для производителей, выбирающих шаблонные настройки, позволяющие сенсору работать на поверхностях с различными цветами и текстурами.

    С калибровой поверхности нет нужды в подобных шаблонах, поскольку можно настроить расстояние отключения на свой вкус.

    Итак, вы решили попробовать себя в киберспорте, но вдруг оказалось, что CS GO и Dota 2 не так уж и просты. То и дело вы попадаете в просак, в то время как соперники наживаются фрагами. В чем же дело? Профессионалы знают: в мышке.

    Лучшие игровые аксессуары: мыши, клавиатуры, гарнитуры 2018 - читать

    Что нужно знать об игровых мышках?

    Не секрет, что многие люди считают компьютерные игры бездельем. Ну и пусть! На самом-то деле именно в игровой индустрии мы находим самые передовые технологии, ведь компьютерные игры сегодня – это дисциплины киберспорта, а геймерские девайсы – спортивные орудия.

    Игровые мыши, конечно же, универсальны. Их можно использовать точно так же, как и обычные, но в играх они раскрывают свой потенциал: дорогие сенсоры, японские переключатели, тефлоновые ножки, грузики, куча кнопок – чего здесь только нет! И все это для того, чтобы дать вам максимум контроля над игровой ситуацией. Важно знать, что все игровые мыши имеют:

    Быстрое время отклика. В большинстве случаев время, за которое команда от мышки передает на ПК, – 1 мс. У обычной офисной мышки оно составляет 16-18 мс.
    Высокое разрешение. Чем выше разрешающая способность мыши, тем быстрее и точнее вы сможете быть в игре. В некоторых моделях разрешение достигает 12000 dpi, хотя многие считают, что достаточно и 3000 dpi. Для сравнения, в офисных мышках среднее разрешение редко превышает 1000 dpi.
    Дополнительные кнопки. Их можно программировать, назначая на них быстрые действия, за которыми обычно нужно лезть в меню, или многокомандные макросы, чтобы в один клик можно было сделать сразу несколько действий. Благодаря встроенной памяти вам не придется каждый раз настраивать профиль в специальном ПО – мышь сама все запоминает, поэтому ее можно смело брать собой на встречу с незнакомым компьютером.
    Внимание к деталям. Даже к таким, как провод, ведь он не должен касаться коврика и обязан быть защищенным от перетирания, и ножки, которые должны быть максимально скользкими.

    Одни модели заточены под шутеры, другие же – имеют больше кнопок, с которыми удобнее играть в Dota 2 и MMORPG-игры. Поэтому мы разделили весь ассортимент игровых мышей в НОУ-ХАУ согласно типа игры – мыши для шутеров и мыши для MMO/MOBA/DOTA2.

    Мыши для шутеров: мало кнопок

    A4Tech Bloody V8M – хотя это бюджетная мышь, сделана она на совесть: провод в тканевой оплетке, суперскользящие металлические ножки, переключатели с ресурсом 10 млн нажатий. Разрешение мыши 3200 dpi, и многие геймеры убеждены, что выше и не нужно. Фишка A4Tech Bloody V8M – это три кнопки рядом с колесиком, которые позволяют переключать режимы стрельбы: одиночный выстрел, очередь из двух и из трех выстрелов. С помощью приложения от A4Tech можно менять профили, а функции кнопок переназначать. Интересно, что приложение позволяет активировать в мышке A4Tech Bloody V8M читерские функции, разработанные специально для шутеров! Мышка компенсирует отдачу оружия и концентрирует траекторию пуль. В итоге, что ни выстрел, то headshot! Заманчиво? Правда, опытные геймеры предупреждают: за такие фокусы могут и забанить. Что мы можем на это ответить? Волков бояться в лес не ходить.

    A4Tech Bloody R8 metal feet Skull design – функционально мышь аналогична A4Tech Bloody V8M и имеет ту же начинку. Разница лишь в том, что эта модель – беспроводная. Производитель обещает полное отсутствие «лагов» благодаря гибким настройкам защиты радиоканала. Работает мышка от встроенного аккумулятора – экономим на батарейках!

    A4Tech Bloody A9 Blazing – мышка имеет вставки из резины, с которыми управление остается точным, даже если рука уже вспотела и ее давно пора бы вытереть об штаны. В главных кнопках установлены японские переключатели Omron, рассчитанные на 20 млн кликов. В отличие от предыдущих моделей, разрешение здесь уже 4000 dpi, которое можно на ходу менять нажатием одной кнопки – это полезно при переключении в снайперский режим. В остальном, здесь есть те же три кнопки для быстрого переключения режимов стрельбы и читерский софт, с которым вы и глазом не успеете моргнуть, как ваш пулемет превратится в снайперскую винтовку.


    Corsair Katar – вообще, эта мышь одинаково подходит как для шутеров, так и для MOBA-игр, однако конструкция ее настолько минималистична, что мы решились назвать ее именно шутерской, поскольку для MOBA и уж тем более для MMORPG все-таки хотелось бы побольше кнопок, чем две основные, колесико и еще одна программируемая. Corsair Katar – симметричная модель, подойдет и правшам и левшам. Внутри установлены переключатели Omron и высокочувствительный сенсор Pixart с разрешением 8000 dpi. Программное обеспечение позволяет детально настроить профили и макросы.

    Logitech G402 Hyperion Fury – самая быстрая в мире игровая мышь со скоростью отслеживания до 500 дюймов в секунду, заявляет Logitech! Секрет в том, что помимо оптического сенсора с разрешением 4000 dpi здесь установлены еще гироскоп и акселерометр, которые не дают сенсору «сорваться» даже если температура боя достигла точки кипения. На мышке всего восемь кнопок, которые можно настроить под разные задачи – бросок гранаты, смена оружия, понижение чувствительности в снайперском режиме и т.д.


    Logitech G700S Wireless – беспроводная перезаряжаемая мышь. Когда заряд никель-металгидридных АА-аккумуляторов приближается к критической отметке – быстро вставляйте USB-шнур и продолжайте игру. Аккумуляторы же тем временем подзарядятся. Разрешение лазерного сенсора составляет 8200 dpi, ножки выполнены из мегаскользкого тефлона, а корпус имеет влагостойкое покрытие, которые предотвращает прилипание ладони. Да, это быстрая и точная мышка, с которой вы будете буквально стричь «фраги»!


    Logitech G502 Proteus Core – в этой мышке Logitech собрала все лучше маркетинговые фишки: можно настраивать вес и балансировку с помощью пяти грузиков по 3,6 г каждый, гонять с чувствительностью до 12000 dpi (сенсор Pixart PMW3366) и менять цвет подсветки – возможно 16,8 млн вариантов! Для профилей и макросов у Logitech G502 Proteus Core целых 11 кнопок.


    Corsair Gaming M65 RGB – еще одна мышка с 16,8 млн вариантов подсветки, возможностью регулировать вес и балансировку и сенсором с разрешением 8200 dpi. Алюминиевый корпус, переключатели Omron и скользящие полимерные подушечки обещают, что это оружие никогда не подведет вас. Среди восьми программируемых кнопок есть одна особенная, снайперская. Но это не A4Tech и никаких читов здесь нет – она просто позволяет быстро понижать разрешение лазерного сенсора, когда нужен сверхточный контроль.

    Мыши для MMO/MOBA/DOTA2: много кнопок

    Logitech G302 Deadalus Prime – симметричная мышка, которая подойдет как правшам, так и левшам. Производитель позиционирует ее именно как MOBA-мышь. Он отмечает, что в MOBA-играх идет предельная нагрузка на две главные кнопки, поэтому было решено укрепить их металлическими пружинами, которые быстро возвращают кнопку в исходное положение. Есть дополнительные кнопки для макросов и оперативного переключения разрешения в пределах четырех ступеней – от 240 dpi до 4000 dpi.



    Logitech G602 Wireless – беспроводная мышь с внушительным временем автономной работы. Двух пальчиковых батареек хватит на 250 часов игры! Производитель отмечает, что это в восемь раз больше, чем предлагают «обычные беспроводные модели». Logitech G602 Wireless не так быстра, как ее проводные собратья – время опроса 2 мс, а разрешение 2500 dpi, но такова плата за отказ от провода и относительно низкую стоимость. Всего для игровых команд и многокомандных макросов здесь 11 программируемых кнопок, 6 из которых вынесены под большой палец – для MMO достаточно!

    Для решения одной из задач мне потребовалось программно получать и обрабатывать изображения небольшого участка поверхности бумаги с очень близкого расстояния. Не получив достойного качества при использовании обычной USB камеры и уже на пол пути в магазин за электронным микроскопом, я вспомнил одну из лекций, на которой нам рассказывали как устроены различные девайсы, в том числе и компьютерная мышка.

    Подготовка и немного теории

    В подробности принципа работы современной оптической мыши я вдаваться не буду, очень подробно об этом написано (рекомендую прочитать для общего развития).

    Погуглив информацию по этой теме и разобрав старую PS/2 мышку Logitech, я увидел знакомую по статьям из интернета картину.

    Не очень сложная схема «мышей первого поколения», оптический сенсор по центру и чип интерфейса PS/2 чуть выше. Попавшийся мне оптический сенсор является аналогом «популярных» моделей ADNS2610/ADNS2620/PAN3101. Я думаю, они и их аналоги были массово произведены на одном и том же китайском заводе, получив на выходе разную маркировку. Документация на него нашлась очень легко, даже вместе с различными примерами кода.

    Документация гласит, что этот сенсор до 1500 раз в секунду получает изображение поверхности размером 18x18 точек (разрешение 400cpi), запоминает его и с помощью алгоритмов сравнения изображений вычисляет смещение по координатам Х и Y, относительно предыдущей позиции.

    Реализация

    Для «общения с сенсором» я использовал популярную вычислительную платформу Arduino, а припаяться решил прямо к ножкам чипа.

    Подключаем 5V и GND к соответствующим выходам Arduino, а ножки сенсора SDIO и SCLK к цифровым пинам 8 и 9.

    Для получения смещения по координатам нужно прочитать значение регистра чипа по адресу 0x02 (X) и 0x03 (Y), а для дампа картинки нужно, сначала записать значение 0x2A по адресу 0x08, а потом 18x18 раз его прочитать оттуда же. Это и будет последнее «запомненное» значение матрицы яркости изображения с оптического сенсора.

    Как я реализовал это на Arduino можно посмотреть тут: http://pastebin.com/YpRGbzAS (всего ~100 строк кода).

    А для получения и отображения картинки была написана программа на Processing.

    Результат

    После небольшого «допиливания» программы для своего проекта, я смог получать картинку прямо с оптического сенсора и производить над ней все необходимые вычисления.

    Можно заметить текстуру поверхности (бумага) и даже отдельные буквы на ней. Следует отметить, что такое четкое качество картинки получается из-за того, что разработчики этой модели мыши добавили в конструкцию специальную стеклянную подставку с небольшой линзой прямо под сенсором.

    Если начать приподнимать мышку над поверхностью даже на пару миллиметров, четкость сразу пропадает.

    Если вы вдруг захотите повторить это дома, для нахождения мышки с аналогичным сенсором рекомендую искать старые девайсы с интерфейсом PS/2.

    Заключение

    Хотя получаемое изображение и не очень большое, этого вполне хватило для решения моей задачи (сканнер штрих кода). Получилось очень даже экономично и быстро (мышка за ~100р + Arduino + пару дней на написание кода).

    Оставлю ссылки на материалы, которые мне очень пригодились для решения этой задачи. Это реально было не сложно и делалось с большим удовольствием. Сейчас я ищу информацию о чипах более дорогих моделей современных мышек для получения качественных изображений с большим разрешением. Возможно, мне даже удастся собрать что-то вроде микроскопа (качество изображений с текущего сенсора для этого явно не подходит). Спасибо за внимание!

    Является не самой важной составляющей всего компьютера в целом, но нет, без неё работа за ПК превращается в очень трудное, не приносящее удовольствие занятие. Мировые бренды A4Tech, Logitech, Defender ведут постоянную борьбу друг с другом за создание самой в мире. Вот почему на сегодняшний момент различные виды компьютерных мышей постоянно претерпевают изменения в лучшую сторону. Если постоянно следить за всеми новинками на рынке компьютерных мышей, и при этом покупать, хотя бы одну из последних моделей, можно попросту остаться без денег.

    Наверняка многие из вас помнят первые мыши, которые распознавали движения и координаты благодаря резиновому шарику внутри. Все старое всегда заменяется новым, вот почему на сегодняшний день о механических манипуляторах вспоминают все реже. пришла на замену механической, вобрав в себя все её лучшие качества. Впрочем, не прошло и нескольких лет, а в двери уже постучалась лазерная мышь, последняя разработка различных компаний, производящих устройства ввода.

    Главный выбор: лазерная мышь или оптическая?

    Пока ребята из A4Tech еще не придумали новый лучший принцип распознавания координат мышью, перед каждым пользователем компьютера, ноутбука или нетбука стоит выбор: лазерная мышь или оптическая. Вот почему необходимо разобраться с преимуществами и недостатками лазерной и оптической мыши, для того, чтобы в дальнейшем не испытывать никаких затруднений при использовании одного из представленных вариантов.

    Несомненно, компьютерная мышь, помимо того что водит курсором по экрану, обладает двумя важными особенностями - точностью и скоростью. Эти слова подтвердит любой профессиональный геймер. В гонке за точностью у механического манипулятора нет никаких шансов в борьбе с новыми устройствами ввода. Поэтому будь то или оптическая, они далеко ушли в гонке за точностью от механической мыши.

    Сам по себе принцип работы обоих видов мышей одинаков: сенсор снимает фото поверхности, а чип внутри мыши анализирует это фото и определяет координаты. При работе оптической, как впрочем, и лазерной мыши, поверхность снизу манипуляторав подсвечивается. Это делается для более качественного и точного снимка, который сделает специальный считывающий элемент, вот только в оптической мыши работают светодиоды, в то время как в лазерной непосредственно лазер. Кстати лазер лучше подсвечивает считываемую поверхность, вследствие чего качество изображения снимка лазером намного четче, чем у светодиода.Получается, что лазерная мышь точнее оптической, потому что лазер в несколько раз точнее светодиода и не искажает считываемую картинку. Это так называемое небольшое отличие лазерной мыши от оптической.

    Тем не менее, кроме точности в хорошем манипуляторе очень важны разрешение и скорость работы. Разрешение измеряется в единицах, которые называют dpi (по-русски - в точках на дюйм). Опять же, лазерная мышь обладает разрешением до двух тысяч, в то время как оптическая может похвастаться только тысячей двумястами точек на дюйм. По правде говоря, наиболее подходящим и удобным расширением для приятной работы с мышью считается восемьсот точек на дюйм, но компании-производители компьютерных манипуляторов просто используют эти показатели, как небольшой маркетинговый ход. При наличии желания, разрешение работы мыши можно отрегулировать в панели управления, и тогда вы собственноручно ощутите на себе все плюсы и минусы высокого разрешения манипулятора.

    Оптические мыши выпускаются в двух интерфейсах PS/2 и то время как лазерные только с интерфейсом USB. Технология USB является более узкопрофильной, и может быть меньше, чем у PS/2. Поэтому курсор будет передвигаться по экрану не так плавно.

    Теперь, когда вы более подробно ознакомились с устройствами ввода, попытайтесь определиться, лазерная мышь или оптическая подходит вам лучше, и обязательно при покупке попробуйте в использовании оба варианта.

    Похожие публикации