Андроид. Windows. Антивирусы. Гаджеты. Железо. Игры. Интернет. Операционные системы. Программы.

Всё о программе CPU-Z. Изучение нюансов разгона процессоров AMD Vishera Nb voltage максимальный при разгоне

Обзор и исследование разгонного потенциала процессора AMD Phenom II X6 1075T

  • Вступление
  • Спецификации
  • Упаковка и внешний вид
  • Тестовая конфигурация
  • Технология AMD Turbo Core
  • Разгон памяти
  • Разгон по частоте шины (HTT)
  • Разгон с использованием жидкого азота
  • Измерение энергопотребления
  • Заключение

Вступление

В течении нескольких месяцев после выхода на рынок первых 6-ядерных процессоров AMD Phenom II X6 на ядре Thuban , в линейке этих процессоров оставалось всего две модели - старший 1090T Black Edition и младший 1055T . Совсем недавно так же был выпущен новый флагман Phenom II X6 1100T Black Edition , но в этот раз речь пойдет не о нем, а о вышедшем осенью прошлого года процессоре Phenom II X6 1075T, который занял промежуточное положение между 1090T Black Edition и 1055T.

Уровень производительности процессоров на ядре Thuban давно известен и хорошо изучен. В этом плане выпуск новой модели не принес никаких изменений. Номинальная частота процессора (а значит и его производительность в штатном режиме) находится посередине между двумя ближайшими к нему моделями и отличается от них только множителем. Поэтому мы не будем подробно останавливаться на этом вопросе, а только проверим процессор на разгон (в том числе экстремальный) и сравним результаты замеров энергопотребления систем, основанных на 6-ядерных процессорах AMD и Intel.

Для тестирования был использован экземпляр процессора, выпущенный на 23-й неделе 2010 года, то есть в начале июня:

Спецификации

Спецификации процессоров AMD Phenom II X6 сведены в таблицу:

*В скобках указаны частоты и значения множителей при активной технологии AMD Turbo Core

Процессор Phenom II X6 1075T на деле оказался не столько дополнением в линейке 6-ядерников AMD, сколько заменой Phenom II X6 1055T. При их одинаковой стоимости в $199 нет теперь причин для покупки именно 1055T вместо 1075T.

Все процессоры имеют одинаковые характиристики (степпинг, TDP, объём кэша и т.д.) и отличаются только номинальной частотой и множителем. Плюс к этому два старших процессора отличаются наличием свободного на повышение множителя.

Тестовая конфигурация

Для тестирования был использован открытый стенд со следующей конфигурацией:

  • Процессор: AMD Phenom II X6 1075T E0 (Thuban);
  • Материнская плата: Asus Crosshair IV Formula, AMD 890FX + SB850, BIOS 1102;
  • Память: G.Skill Perfect Storm F3-16000CL7T-6GBPS 7-8-7-20 1.65V 3x2048Mb (использовались только два модуля памяти);
  • Видеокарты: Palit GeForce 7300GT Sonic, 256 Мбайт GDDR3, PCI-E;
  • Жесткий диск: Western Digital WD1500HLFS (Velociraptor), 150 Gb;
  • Блок питания: Topower PowerTrain TOP-1000P9 U14 1000W;
  • Термопаста: Arctic Silver Ceramique;
  • Охлаждение процессора: Glacial Tech F101 PWM.

Программное обеспечение:

  • ОС Windows 7 Ultimate build 7600 x86;
  • DirectX June 2010 Redistributable;
  • NVIDIA ForceWare v258.96;
  • Asus TurboV EVO v1.02.23;
  • CPU-Z v1.55;
  • Core Temp v0.99.7;
  • LAVALYS Everest Ultimate v5.50.2183 Beta;
  • LinX 0.6.4.

Технология AMD Turbo Core

Процессор , как и другие модели на ядре Thuban, поддерживает технологию автоматического разгона AMD Turbo Core, о чем говорит последняя буква "T" в его названии. Принцип работы AMD Turbo Core в целом схож с технологией Turbo Boost у процессоров производства Intel и основан на управлении частотой отдельных ядер и напряжением процессора, в зависимости от уровня нагрузки на них. Одно из основных отличий от процессоров Intel в том, что AMD Turbo Core повышает множители на половине загруженных ядер с одновременным понижением на остальных не используемых. То есть для активации AMD Turbo Core необходимо, чтобы нагружены были не более половины ядер процессора, то есть не более трёх в случае 6-ядерного ядра Thuban и не более двух у 4-ядерных Zosma.

Для поддержки технологии AMD Turbo Core достаточно обновить BIOS материнской платы. После чего в нём появится опция, позволяющая при желании эту технологию отключить. Впрочем, для этого можно использовать и утилиту AMD Overdrive .

При активации AMD Turbo Core процессор AMD Phenom II X6 1075T автоматически увеличивает множитель на трёх загруженных ядрах с x15 до x17.5. При номинальной оперной частоте HTT в 200 МГц это дает повышение частоты на 500 МГц (с 3000 до 3500). В тоже время множители на ядрах, оставшихся свободными, понижаются до x4, что даёт их итоговую частоту 800 МГц, в случае работы процессора в штатном режиме. Без нагрузки (при условии, что технологии энергосбережения отключены), а так же при одновременной нагрузке больше на четыре или более ядер множители всех ядер остаются на номинальном значении x15.

Еще одно важное отличие AMD Turbo Core от Intel Turbo Boost - невозможность зафиксировать для постоянного использования средствами BIOS повышенный множитель, независимо от нагрузки. Материнские платы для платформы Socket 1366 и Socket 1156 давно научились это делать, в том числе и бюджетные модели, хотя и не все. А у плат для процессоров AMD, включая модели на последнем флагманском чипсете AMD 890FX, пока такой возможности нет. Не помогает даже отключение части ядер в BIOS. К сожалению, это сводит к нулю практическую пользу от AMD Turbo Core для оверклокеров, способных самостоятельно настроить все параметры для разгона процессора. При работе процессора на частотах, близких к пределу его стабильной работы, самопроизвольные изменения множителей, приводящие к скачкам частоты на несколько сотен мегагерц, просто недопустимы. Штатного множителя у AMD Phenom II X6 1075T (и даже у младшего в линейке AMD Phenom II X6 1055T), доступного без активации AMD Turbo Core, вполне достаточно для обычного не экстремального разгона на воздухе и с использованием водяного охлаждения до частот в районе 4000-4200 МГц. Поэтому при разгоне процессоров на ядре Thuban технологию AMD Turbo Core лучше отключить.

Что касается экстремального разгона, то тут AMD Turbo Core может оказаться полезной, но только если материнская плата не способна работать на высоких частотах HTT, а процессор не относится к серии Black Edition, то есть имеет заблокированный на повышение множитель. В этом случае единственным способом поднятия частоты остается повышение множителя выше штатного при помощи AMD Turbo Core. Причем польза от этого может быть не только в однопоточных бенчмарках, но и во всех остальных, которым достаточно для получения высокого результата только трех ядер, если сделать к ним привязку (например, при помощи диспетчера задач). Но тут нужно учесть, что вы будете лишены возможности вручную управлять множителями на ядрах. И опять же, резкие скачки частот и напряжения могут помешать успешному разгону, а для того чтобы получить результат в CPU-Z (или любой скриншот с частотами, на которых фактически был пройден какой-либо бенчмарк) придется параллельно создавать фоновую нагрузку хотя бы на одно ядро. Другими словами эффективные результаты при экстремальном разгоне в условиях работы AMD Turbo Core получить невозможно.

Разгон на воздушном охлаждении и температурный режим

Для охлаждения процессора использовался кулер Glacial Tech F101 PWM . Температура воздуха в помещении во время тестирования составляла +21°C.

Штатные напряжения могут незначительно отличатся у разных экземпляров процессоров. В нашем случае Vcore по умолчанию было равно 1.325 В, а напряжение встроенного контроллера памяти (CPU_NB Voltage ) - 1.1625 В.

На номинальной частоте процессор прогревался очень слабо. Температура составила +34°C в покое и +41°C под нагрузкой:

Из-за особенности роботы используемой материнской платы, завышающей частоту шины HTT, номинальная частота также устанавливалась с небольшим завышением до 3011 МГц.

Как оказалось, BIOS 1102 для Asus Crosshair IV Formula имеет одну неприятную особенность: завышение Vcore под нагрузкой после включения функции Loadline Calibratiion . И чем больше ядер у используемого процессора, тем выше уровень завышения. При штатном напряжении это не очень заметно, завышение составило около 0.1 В (т.е. 1.332 В в покое повышалось до 1.344 В под нагрузкой). Но уже при установке 1.45 В на 6-ядерных процессорах оно повышается на 0.5V (то есть до 1.50 В), что совсем не мало. А если Loadline Calibratiion не включать, то начинаются значительные просадки напряжения, что еще хуже, чем завышение.

Разгон процессора на воздушном охлаждении ограничился частотой

4043 МГц :


Несмотря на приличный запас по температуре (+35°C в покое и +49°C под нагрузкой), повышение напряжения выше 1.50 В под нагрузкой не приводило к дальнейшему улучшению разгонного потенциала.

Технология AMD Turbo Core была отключена, так как штатного множителя x15 более чем достаточно для разгона на воздушном охлаждении. Наоборот, множитель пришлось даже снизить до x13, чтобы подобрать наиболее оптимальный режим работы памяти и CPU_NB, при котором их частоты тоже были бы близки к предельным.

Максимальная частота, зафиксированная программой CPU-Z на воздушном охлаждении, составила 4500 МГц с напряжением 1.476 В:

Она была получена на втором ядре (core1), которое оказывается лучшим по разгону на всех протестированных нами процессорах AMD. По остальным ядрам результаты получились такими:

  • Core0: 4304 МГц;
  • Core2: 4439 МГц;
  • Core3: 4424 МГц.

Разгон встроенного контроллера памяти (CPU_NB)

Контроллер памяти совсем немного недотянул до трех гигагерц. После установки в BIOS напряжения CPU_NB равного 1.35 В была получена частота 2980 МГц . При этом мониторинг в программе LAVALYS Everest показывал напряжение как 1.36 В в покое и 1.38 В под нагрузкой.


Максимальная частота CPU_NB, на которой можно было снять скриншот, оказалась на уровне 3200 МГц :

Разгон памяти

После неуспешных попыток в прошлом заставить работать память на платформе AMD на частоте 2000 МГц с процессором Phenom II X6 1090T, была надежда что другой экземпляр процессора на ядре Thuban сможет в этом помочь, но, к сожалению 1900 МГц это все на что оказался способен встроенный контроллер памяти у нашего исследуемого экземпляра Phenom II X6 1075T:

Это лишь немногим лучше результатов этой же памяти и на этой же материнской плате с процессорами на ядре Deneb .

Максимальная "скриншотная" частота памяти в CPU-Z так же недотянула до двух гигагерц и составила 1966 МГц:

Разгон по частоте шины (HTT)

Зато с разгоном по частоте HTT у этого процессора все было отлично. Возможность загрузки операционной системы до частоты 376 МГц и дальнейший разгон из Windows при помощи программы Asus TurboV EVO до 422 МГц :

Высокая номинальная частота и напряжение у процессоров AMD приводит и к более высокому энергопотреблению у них при работе в штатном режиме, но стоит только разогнать процессор от Intel с напряжением 1.40 В или выше, как он сразу же обгоняет своего соперника по этому показателю.

Заключение

В заключении подитожим преимущества и недостатки процессора AMD Phemon II X6 1075T :

[+] Наряду с AMD Phenom II X6 1055T является самым дешевым на данный момент 6-ядерным процессором. В разы дешевле всех 6-ядерным процессоров Intel, и даже дешевле многих 4-ядерных.

[+] Очень низкие рабочие температуры, даже в разгоне с повышением напряжения;

[+] Штатного множителя более чем достаточно для разгона с применением систем воздушного и жидкостного охлаждения. А при использовании хорошей материнской платы его, скорее всего, хватит и для экстремального разгона;

[+] Поддержка фирменной технологии AMD Turbo Core;

[-] Заблокированный на повышение множитель;

[-] Встроенный контроллер памяти по-прежнему неспособен работать с высокочастотными комплектами, частота которых превышает 2000 МГц;

[-] Разгонный потенциал при экстремальном разгоне может оказаться ниже, чем у старших моделей 1090T и 1100T.

Выражаем благодарность нашему партнеру - компании AMD за предоставленный на тестирование процессор Phenom II X6 1075T.

Предлагаем обсудить данный материал в специальной ветке нашего .


Если вы будете разгонять процессор "Vishera", то в UEFI/BIOS получите набор разных параметров. Хотя по сравнению с платформой Intel их не так много. Ниже мы привели наиболее важные из них.

Напряжения "Vishera"

  • CPU Voltage

Напряжение процессорного ядра – отличается от одного CPU к другому в зависимости от VID/качества процессора. На это напряжение следует обращать внимание большинству оверклокеров.

  • CPU-NB Voltage

Напряжение северного моста в CPU (не следует путать с напряжением чипсета); данная часть CPU работает в собственном домене частоты и напряжения. Частота CPU-NB определяет скорость работы контроллера памяти и кэша L3. Компонент CPU-NB довольно существенно влияет на общую производительность системы. На высоких частотах рекомендуется поднимать напряжение CPU-NB для повышения стабильности системы.

  • CPU Voltage Offset

Большинство материнских плат позволяют задать напряжение смещения, позволяющее увеличить напряжение выше диапазона напряжений CPU VID. Напряжение смещения добавляется к значению VID, оно может повлиять на разгон как с положительной, так и с отрицательной стороны. Фактическое напряжение рассчитывается следующим образом: CPU Voltage + Offset. Пример: VID 1,350 В + смещение 0,100 В = 1,45 В фактическое напряжение.

  • NB Voltage

Напряжение чипсета. При разгоне через увеличение множителя повышать не требуется.

  • HT Voltage

Если вы хотите разогнать процессор AMD ещё и через интерфейс HT, то может потребоваться увеличение данного напряжения.

  • V DDQ

Напряжение памяти. Зависит от используемых планок памяти.


LLC/Loadline Calibration:

Предотвращает эффект Vdroop (падение напряжения под нагрузкой). К сожалению, эта настройка встречается далеко не у каждой материнской платы AMD.

Вкладка "" имеет всего две группы, первая из которых - General (общее) отвечает за основные характеристики памяти.

  • Type - тип оперативной памяти, например, DDR , DDR2 , DDR3 .
  • Size - объём памяти, измеряется в мегабайтах.
  • Channels # - количество каналов памяти. Используется для определения наличия многоканального доступа к памяти.
  • DC mode - режим двухканального доступа. Существуют чипсеты, которые могут по-разному организовывать двухканальный доступ. Из простых методов это symmetric (симметричный) - когда на каждом канале находятся одинаковые модули памяти, либо assymetric , когда память используется разной структуры и/или объёма. Ассиметричный режим поддерживают чипсеты Intel, начиная с 915P и NVIDIA, начиная с Nforce2 .
  • NB Frequency - частота контроллера памяти. Начиная с AMD K10 и Intel Nehalem , встроенный контроллер памяти получил раздельное тактование от ядер процессора. Данный пункт указывает его частоту. Для систем с контроллером памяти, находящимся в чипсете, данный пункт неактивен, что и можно наблюдать.

Следующая группа - Timings . Посвящена таймингам памяти, характеризующим время выполнения памятью определённой типовой операции.

  • CAS# Latency (CL) - минимальное время между подачей команды на чтение (CAS# ) и началом передачи данных (задержка чтения).
  • RAS# to CAS# Delay (tRCD) - время, необходимое для активации строки банка, или минимальное время между подачей сигнала на выбор строки (RAS# ) и сигнала на выбор столбца (CAS# ).
  • RAS# Precharge (tRP) - время, необходимое для предварительного заряда банка (precharge). Иными словами, минимальное время закрытия строки, после чего можно активировать новую строку банка.
  • Cycle Time (tRAS) - минимальное время активности строки, то есть минимальное время между активацией строки (её открытием) и подачей команды на предзаряд (начало закрытия строки).
  • Bank Cycle Time (tRC) - минимальное время между активацией строк одного банка. Является комбинацией таймингов tRAS +tRP - минимального времени активности строки и времени её закрытия (после чего можно открывать новую).
  • Command Rate (CR) - время, необходимое для декодирования контроллером команд и адресов. Иначе, минимальное время между подачей двух команд. При значении 1T команда распознаётся 1 такт, при 2T - 2 такта, 3T - 3 такта (пока только на RD600 ).
  • DRAM Idle Timer - количество тактов, через которое контроллер памяти принудительно закрывает и предзаряжает открытую страницу памяти, если к ней не было обращений.
  • Total CAS# (tRDRAM) - тайминг, используемый памятью RDRAM. Определяет время в тактах минимального цикла распространения сигнала CAS# для канала RDRAM. Включает в себя задержку CAS# и задержку самого канала RDRAM - tCAC +tRDLY .
  • Row to Column (tRCD) - ещё один тайминг RDRAM. Определяет минимальной время между открытием строки и операцией над столбцом в этой строке (аналогичен с RAS# to CAS# ).

Похожие публикации